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Abstract 
Objectives: This study aims to rigorously evaluate the Dawes-Redman computerised 
cardiotocography algorithm's effectiveness in assessing antepartum fetal wellbeing. It 
focuses on analysing the algorithm's performance using extensive clinical data, 
examining accuracy, sensitivity, specificity, and predictive values in various scenarios. 
The objectives include assessing the algorithm's reliability in identifying fetal wellbeing 
across different risk prevalences, its efficacy in the context of temporal proximity to 
delivery, and its performance across ten specific adverse pregnancy outcomes. This 
comprehensive evaluation seeks to clarify the algorithm's utility and limitations in 
contemporary obstetric practice, particularly in high-risk pregnancy scenarios. 

Methods: Antepartum fetal heart rate recordings from term singleton pregnancies 
between 37 and 42 gestational weeks were extracted from the Oxford University 
Hospitals database, spanning 1991 to 2021. Traces with significant data gaps or 
incomplete Dawes-Redman analyses were excluded. For the ten adverse outcomes, only 
traces performed within 48 hours prior to delivery were considered, aligning with clinical 
decision-making practices. A healthy cohort was established using rigorous inclusion and 
exclusion criteria based on clinical indicators. Propensity score matching, controlling for 
gestational age and fetal sex, ensured balanced comparisons between healthy and 
adverse outcome cohorts. The Dawes-Redman algorithm’s categorisation of FHR traces 
as either ‘criteria met’ (an indicator of wellbeing) or ‘criteria not met’ (indicating a need for 
further evaluation) informed the evaluation of predictive performance metrics. 
Performance was assessed using accuracy, sensitivity, specificity, and predictive values 
(PPV, NPV), adjusted for various risk prevalences. 

Results: 4,196 term antepartum FHR traces were identified, matched by fetal sex and 
gestational age. The Dawes-Redman algorithm showed a high sensitivity of 91.7% for 
detecting fetal wellbeing. However, specificity for adverse outcomes was low at 15.6%. 
The PPV varied with population prevalence, high in very low-risk settings (99.1%) and 
declined with increased risk. Temporal proximity to delivery indicated robust sensitivity 
(>91.0%). Specificity notably decreased over time, impacting the algorithm’s 
discriminative power for identifying adverse outcomes. Across different adverse 
conditions, the algorithm’s performance remained consistent, with high sensitivity but 
varying NPVs, confirming its utility in detecting fetal wellbeing rather than adverse 
outcomes. 
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Conclusion: These findings reveal the Dawes-Redman algorithm is effective for detecting 
fetal wellbeing in term pregnancies, evidenced by its high sensitivity and PPV. However, 
its low specificity suggests limitations in its ability to identify fetuses at risk of adverse 
outcomes. The predictive accuracy of the algorithm is significantly affected by the 
prevalence of healthy pregnancies within the population. Clinical interpretation of FHR 
traces that do not satisfy the Dawes-Redman criteria should be approached with caution, 
as they do not necessarily correlate with heightened risk. While the algorithm proves 
reliable for its primary objective in low-risk contexts, the development of algorithms 
optimised for high-risk pregnancy scenarios remains an area for future enhancement. 
 

Introduction 
Fetal heart rate (FHR) monitoring (the ‘non-stress test’ or ‘cardiotocography’) is one of 
the commonest obstetric investigations performed worldwide.1 It involves the non-
invasive application of an ultrasound transducer to the maternal abdomen to continuously 
evaluate the FHR, enabling real-time, continuous assessment of fetal physiology. 
Patterns within the FHR trace are associated with the central and peripheral nervous 
systems and fetal endocrine activity2,3. These patterns are used to evaluate fetal brain 
health and overall wellbeing.4,5 FHR monitoring in the third trimester before labour (the 
antepartum) is frequently performed to assess whether a baby is at risk of an adverse 
outcome or death, indicating early pregnancy intervention is required.6,7 

Antepartum FHR monitoring has been a mainstay of pregnancy care since the 1960s. 
Traces are traditionally interpreted visually, however the reproducibility and reliability of 
human visual analysis has remained consistently poor.8 Expert clinical evaluation fails to 
accurately identify between 35–92% of fetal heart rate patterns.9,10 Inter- and intra-
observer agreement between experts has been estimated as low as 29% while false 
positive rates for identifying an at-risk fetus are as high as 60%.11-16 Human 
misinterpretation of these patterns has been directly implicated in avoidable early 
pregnancy intervention, increased adverse pregnancy outcomes (including fetal death) 
and is a major source of medicolegal litigation globally.17-20 Efforts to standardize visual 
evaluation methods in antepartum fetal heart rate monitoring have faced issues with 
performance, reproducibility and clinician consensus.20-24 

Professors Geoffrey Dawes and Christopher Redman at the University of Oxford began 
developing a computerised algorithm in the 1978 to address this.25,26 The goal was to 
use automated FHR analysis to identify fetuses in a state of wellbeing. The algorithm 
identifies a baseline FHR within the trace which it then uses to extract several clinically-
validated patterns: the basal FHR, accelerations, decelerations, episodes of high or low 
variation, short-term variability (STV) and long-term variability (LTV). These patterns have 
been associated with healthy and/or adverse fetal outcomes.27 Numerical analysis of 
these patterns was then used to develop a set of ten criteria for fetal wellbeing: the 
Dawes-Redman Criteria.28 If all criteria are fulfilled, the trace is classified as ‘criteria met’, 
the fetus deemed ‘healthy’ and the operator advised to cease FHR monitoring. If the 
trace fails to meet all ten criteria after 60 minutes, it is categorised as ‘criteria not met’, 
analysis halts and guidance is given to seek expert clinical opinion. 

The first commercial version of the Dawes-Redman algorithm was released in 1989 and 
has since become ubiquitous in antepartum FHR monitoring globally.28 Following 
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publication of the algorithm in 2002, manufacturers of FHR monitors have incorporated 
the algorithm and derivatives thereof into their systems.28-31 In the UK, it is currently found 
in over 120 hospitals while internationally it is sold in more than 110 countries. It is 
incorporated into local and national guidelines.32,33 Clinical decisions regarding the 
pregnancy are made using its output. While the algorithm was designed to identify 
fetuses in a state of wellbeing, its results have also been used to identify at-risk 
pregnancies.34,35 Several studies have evaluated components of the Dawes-Redman 
algorithm (e.g. STV or LTV) in high-risk pregnancies (e.g. hypoxaemia36, acidaemia37, 
intrauterine or neonatal death38). However, the algorithm was not designed for this 
purpose. There has never been a large-scale, robust analysis of the algorithm’s 
performance at its actual objective, despite its global prominence in obstetric care.32 

We have undertaken the first evaluation of the Dawes-Redman algorithm for its intended 
and most common purpose at term: identifying antepartum fetuses in a state of 
wellbeing. We utilised high-fidelity clinical data from the last 30 years of Dawes-Redman 
use at the John Radcliffe Hospital in Oxford, UK. We developed two cohorts of 
antepartum FHR traces acquired at term: those from pregnancies with healthy fetal 
outcomes and another with high-risk adverse outcomes. Performance was evaluated 
with six metrics important in clinical practice: accuracy, sensitivity, specificity, positive 
predictive value, negative predictive value and the F1 score. We have evaluated the 
general performance of the algorithm between 0–48 hours prior to delivery and whether 
temporal proximity to delivery and discrete adverse outcomes affect the reliability of the 
Dawes-Redman algorithm.  

Methods 
Data processing, cohort development and extraction of fetal heart rate patterns 

We extracted raw digital antepartum fetal heart rate (FHR) traces from the Oxford 
University Hospitals maternity database at the John Radcliffe Hospital (Oxford, United 
Kingdom) between the 1st of January 1991 and 31st of December 2021. Traces were 
acquired from singleton pregnancies between 37+0 and 41+6 gestational weeks for which 
associated clinical outcome information for the mother and baby were available. This 
study was approved by the Ethics Committee in Joint Research Office, Research and 
Development Department, Oxford University Hospitals NHS Trust: 13/SC/0153. Each 
trace had previously undergone Dawes-Redman analysis as part of standard clinical 
practice. Traces missing >30% of their signal information or had their Dawes-Redman 
analysis aborted before evaluation could complete were removed. 

We identified ten adverse pregnancy outcomes in the database. These included 
acidaemia, asphyxia, birthweight <3rd centile for gestational age, extended special care 
(SCBU) admission, hypoxic ischaemic encephalopathy, low Apgar scores, neonatal 
sepsis, perinatal infections, respiratory conditions and antepartum or intrapartum 
stillbirth. Outcome definitions are provided in Supplementary Table 4. In cases of adverse 
pregnancy outcomes, only FHR traces acquired within 48 hours prior to delivery of the 
fetus were selected. Antepartum FHR monitoring is performed for myriad indications. 
Thus, it is not accurate to presume monitoring performed over the course of a pregnancy 
pertains to a consistent clinical indication or presentation. Selecting for traces collected 
well before an adverse outcome occurs, without corroborating clinical evidence, would 
imply all traces were conducted in the presence of (the same) pathology. Constraining 
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the timeframe to within 48 hours before delivery aids in mitigating this assumption. This 
approach also aligns more closely with clinical practice whereby the outcome of FHR 
monitoring is used to inform more immediate decision making. 

To establish a cohort of healthy outcome pregnancies for comparison, a set of inclusion 
and exclusion criteria were utilised. Pregnancies with antepartum FHR traces were 
included in the healthy outcome pregnancy cohort if they met the following criteria: 
liveborn singleton baby, gestational age at delivery between 37+0 and 41+6 weeks, 
maternal age at booking between 18 to 39 years, birthweight ≥10th centile, duration of 
labour less than 24 hours, an Apgar Score of ≥4 at 1 minute and ≥ 7 at 5 minutes and 
umbilical venous ±arterial pH within the normal range (arterial pH >7.13 and base deficit 
<10.0 for babies delivered via caesarean section without labour; arterial pH >7.05 and 
base deficit <14.0 for babies who experienced labour), and a cerebroplacental ratio 
greater than 1.5 at 36 weeks.39 The latter two criteria only applied if the corresponding 
data were available. 

Pregnancies with antepartum FHR traces were excluded from the healthy outcome 
cohort for any of the following reasons: neonatal death within 3 months following delivery, 
emergency caesarean section delivery, breech presentation, any requirement for 
neonatal resuscitation, SCBU admission following delivery or neonatal cooling, 
hypertensive disorders of pregnancy such as pre-eclampsia and clinically-suspected but 
unconfirmed infection or sepsis. 

Antepartum FHR traces from the healthy outcome cohort were then matched with 
corresponding traces from pregnancies with confirmed adverse outcomes. One-to-one 
matching was performed using propensity score matching controlling for the gestational 
age when FHR monitoring was performed and fetal sex.40 This ensures each case in the 
healthy outcome cohort has a directly comparable counterpart in the adverse outcome 
cohort, thereby minimising the potential for bias in the comparison. One-to-one matching 
also facilitates modelling of outcome prevalences by creating balanced groups, which 
enables more accurate estimations of the effect size attributable to the health outcomes 
being studied. Controlling for gestational age is vital, as it directly influences FHR 
characteristics. Variations in FHR patterns can be attributed to the developmental stage 
of the fetus.41-43 Ignoring this variable could introduce bias and confound results. Similarly, 
fetal sex is to control for, given male and female fetuses exhibit different physiological 
responses, intrauterine stress.44,45  

To ensure precision in matching, a maximum difference of 0.05 in propensity scores was 
allowed between matched pairs to constrain the similarity of their characteristics. Each 
trace from a pregnancy was used only once to avoid duplication. Following matching, 
the average differences between the gestational ages at monitoring and fetal sexes for 
between the cohorts were calculated to confirm the adequacy of the matching process. 

Performance analysis 

We categorised Dawes-Redman algorithm results as ‘positive’ when the algorithm 
assigned the FHR trace as 'criteria met' (e.g., the fetus is in a state of wellbeing) and 
negative when designated as 'criteria not met'. This terminology stems from the 
algorithm’s foundational purpose for identifying ‘normal’ FHR traces. Accordingly, we 
label a pregnancy as 'positive' if it aligned with the healthy outcome cohort and 'negative' 
otherwise. True positives therefore refer to cases where both the FHR trace and 
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pregnancy status are classified as positive. False positives are when the trace is deemed 
positive despite the pregnancy belonging to the adverse outcome cohort. True negatives 
occur when the algorithm identifies the trace as negative in adverse outcome 
pregnancies, while false negatives represent instances where the trace is associated with 
the healthy outcome cohort yet the algorithm classified the trace as ‘criteria not met’, i.e. 
negative. A tabular representation of these terms is presented in Supplementary Table 5. 

Accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value 
(NPV) and the F1 score were calculated for each analysis. Accuracy represents the 
proportion of total classifications (both positive and negative) that are correct. In this 
context, it evaluates how accurately the algorithm classifies FHR traces and aligns them 
with the corresponding pregnancy outcome. Sensitivity reflects the ability of the algorithm 
to correctly identify 'positive' cases, i.e., instances where both the FHR trace is classified 
as ‘criteria met’ and the pregnancy outcome is healthy. Specificity assesses the system's 
capability to correctly identify 'negative' cases, where both the FHR trace is classified as 
'criteria not met' and the pregnancy belongs to the adverse outcome cohort. PPV 
indicates the probability that a 'positive' result (FHR trace classified as criteria met) 
corresponds to a healthy pregnancy. NPV denotes the probability that a 'negative' result 
(FHR trace classified as 'criteria not met') corresponds to an adverse pregnancy 
outcome. The F1 score is the harmonic mean of sensitivity and PPV, enabling a more 
balanced assessment of the system’s ability to identify healthy pregnancies. 

Accurate appraisal of the PPV and NPV is dependent on the underlying prevalence of 
the outcome of interest within a given population, here healthy pregnancies.46 For clinical 
contextualisation, we evaluated the PPV and NPV across several theoretical risk strata: 
a normality prevalence of 99% (very low risk), 90% (low risk), 80% (medium risk) and 70% 
(high risk). The enables adjustment of the PPV and NPV based on the specified 
prevalence, facilitating contextualisation of performance with scenarios more aligned with 
obstetric practice. 

To circumvent potential bias stemming from pregnancies with multiple FHR traces within 
a particular data group, lower numbers of traces at different gestational ages or 
imbalance in specific adverse outcomes, stratified bootstrapping was employed for each 
analysis.47 A balanced, random sample consisting of normal healthy pregnancies and 
adverse outcome pregnancies was drawn from each gestational age and time before 
delivery (in the case of adverse pregnancy outcomes), ensuring a fair representation. 
Performance metrics were then computed for each random sample. This was repeated 
100,000 times with the mean and 95% confidence intervals derived from these values 
for each performance metric. 

Three analyses were conducted. We first evaluated the performance of the Dawes-
Redman algorithm for all term antepartum FHR traces acquired between 0–48 hours 
prior to delivery. We then evaluated whether temporal proximity to delivery affected 
performance. We split the data into two time windows: cases in which the adverse 
outcome antepartum FHR trace was acquired between 0 and 23 hours and 59 minutes 
prior to delivery (0–24 hours) and those in which the adverse outcome trace was acquired 
between 24 and 47 hours and 59 minutes (24–48 hours) prior to delivery. We then 
compared the performance in both windows. Finally, we investigated if the ability of the 
Dawes-Redman algorithm to identify fetuses in a state of wellbeing differed meaningfully 
by adverse outcome. We calculated the performance metrics for each discrete outcome 
comprising the adverse outcome cohort separately for all traces between 0–48 hours. 
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This methodological framework was devised to not only scrutinise the data from multiple 
perspectives – general performance, temporal proximity to delivery and adverse 
outcomes – but also to ensure a balanced and unbiased representation of all 
pregnancies, thereby aiming to furnish a robust and insightful analysis of the Dawes-
Redman algorithm’s performance in clinical practice. 

Statistical analysis 

Discrete variables are presented as numbers (with interquartile ranges) and percentages 
while continuous variables are listed as mean and 95% confidence intervals (95% CI). 
Performance metrics are expressed in percentages. Categorical variables were 
compared using the Chi-square test while continuous variables were compared using 
the Mann-Whitney U test with a significant threshold of 0.05. Sensitivity, specificity, PPV, 
NPV and the F1 score were calculated using standard methods.48 PPV, NPV and their 
confidence intervals were calculated using the method described by Mercaldo et al.49 
Cohen's f was employed to determine effect sizes, with f values of 0.10 or less denoting 
a small effect, values up to 0.25 indicating a medium effect and values up to 0.40 
representing a large effect.50 Analysis was performed using Python (version 3.9.17) with 
the Pandas (version 1.5.3), NumPy (version 1.23.5), Matplotlib (version 3.7.1) and SciPy 
(version 1.10.1) packages. 

Results 
A total of 4,196 antepartum FHR traces from 1,820 healthy outcome and 1,560 adverse 
outcome pregnancies recorded at term were used for analysis. 1:1 matching by fetal sex 
and gestational age at recording resulted in 2,098 traces from healthy outcome 
pregnancies and 2,098 traces from adverse outcome pregnancies. 49.7% (1,042) of the 
traces were from adverse outcome pregnancies delivered within 24 hours after the trace 
was performed. 51.3% (1,056) of the traces were from adverse outcome pregnancies 
delivered within 24–48 hours. Supplementary Tables 1 and 2 show the baseline 
characteristics of infants and mothers. Supplementary Table 3 describes the frequency 
of each adverse outcome. 

Maternal age was comparable, with a median of 31.0 years in both groups (p=0.39). 
Healthy outcome pregnancies reported a median maternal BMI of 23.3 kg/m2 and 
adverse outcomes a median BMI of 25.3kg/m2 (p<0.01). There was negligible variance 
in both viable and non-viable parity, with medians of 1.0 and 0.0 respectively in both 
groups (p-value <0.01, effect size 0.1). Maternal smoking status at delivery differed. The 
healthy outcomes group had no current smokers, more ex-smokers (18.4% vs. 9.1%), 
and never-smokers (74.1% vs. 39.4%) than the adverse outcomes group. The mode of 
labour onset showed significant differences. Inductions were more common in adverse 
outcome pregnancies (800, 51.3%) compared to healthy outcomes (613, 33.7%, 
p<0.01). Adverse outcome pregnancies did not experience labour more frequently (366, 
23.5%) compared to healthy outcome pregnancies (231, 12.7%, p<0.01). Spontaneous 
labour was reported in 976 (53.6%) of healthy outcome pregnancies against 394 (25.3%, 
p<0.01) of adverse outcome pregnancies. 

Male and female births were proportionally similar across healthy and adverse outcome 
pregnancies (p=0.46). Birthweight was significantly lower in the adverse outcome group 
(p<0.001). The median gestational age at monitoring was comparable between groups 
(p=0.99), however gestational age at delivery was earlier in adverse outcome pregnancies 
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(39+3 vs 40+1, p<0.001). Apgar scores at 1 minute were lower in the adverse outcome 
pregnancies, with diminished but still significant differences at 5 and 10 minutes 
(p<0.001). Elective caesareans were more common in adverse outcome pregnancies 
(p<0.001) while spontaneous vertex delivery was more common in healthy outcome 
pregnancies (p<0.001). 

Performance evaluation 

Analysis of the balanced cohorts revealed that 45.9% (95% CI: 45.2–46.5%) of the traces 
meeting the Dawes-Redman criteria were associated with healthy pregnancy outcomes 
(true positives), while 42.2% (95% CI: 41.4–43.0%) corresponded to adverse pregnancy 
outcomes (false positives). In cases where the Dawes-Redman criteria were not met, 
4.1% (95% CI: 3.5–4.8%) were associated with healthy outcomes (false negatives), and 
7.8% (95% CI: 7.0–8.6%) to adverse outcomes (true negatives). Table 1 shows the 
confusion matrix. 

The overall accuracy of the Dawes-Redman algorithm was 53.7% (95% CI: 52.6–54.7), 
which reflects the proportion of total cases correctly identified as either normal or adverse 
outcome. Sensitivity, in this case, is the algorithm's ability to correctly identify healthy 
outcome pregnancies, which was 91.7% (95% CI: 90.4–92.9). This high sensitivity 
indicates the algorithm is effective at detecting pregnancies where the fetus is in a state 
of wellbeing. However, the specificity, here the ability to correctly identify pregnancies 
with adverse outcomes, is considerably lower at 15.6% (95% CI: 14.0–17.3), suggesting 
the algorithm has limited effectiveness in correctly identifying cases where the fetus is not 
in a state of wellbeing (Table 2). 

The Dawes-Redman algorithm's efficacy in predicting healthy pregnancy outcomes 
exhibited a decline with decreasing population prevalence of healthy pregnancies. Within 
the very low-risk cohort, where the prevalence of healthy outcomes was 99%, the 
algorithm demonstrated a high positive predictive value (PPV) of 99.1% (95% CI: 99.1–
99.1). However, its negative predictive value (NPV) was markedly low at 1.9% (95% CI: 
1.6–2.3) and the F1 Score, the harmonic mean of sensitivity and PPV, was 95.2% (95% 
CI: 94.5–95.9). As risk stratification increased, with the proportion of healthy pregnancies 
decreasing from 90% to 70% respectively, there was a proportional decline in PPV, from 
90.7% to 71.7% and an increase in NPV from 17.4% to 44.7%. This trend was 
accompanied by a corresponding decrease in the F1 Score from 91.2% to 80.5% (Table 
2). We demonstrate the principle that PPV and NPV are directly associated with 
population prevalence in Figure 1. 

Temporal proximity to delivery 

We then evaluated whether there was a difference in the algorithm’s discriminatory power 
when comparing FHR traces acquired between 0–24 hours and 24–48 hours prior to 
delivery (Table 3). The algorithm demonstrated a statistically significant higher accuracy 
within the 0–24 hour window (56.6%, 95% CI: 55.2–58.1) compared to the 24–48 hour 
window (51.3%, 95% CI: 50.0–52.6; p=0.008). Sensitivity remained consistently high 
across both intervals (92.2% for 0–24 hours and 91.9% for 24–48 hours) without 
significant variation (p=0.898). However, specificity decreased from 21.1% in the 0–24 
hour interval to 10.7% in the 24–48 hour interval (p=0.001). Confusion matrices for these 
time windows are shown in Supplementary Tables 6 and 7. 
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In the very low-risk group, there was no significant difference between the time windows 
in terms of sensitivity (p=0.48). A significant decrement in PPV was observed as the risk 
category increased from low to high, with PPVs of 91.3% and 90.3% in the low-risk 
category (p=0.006), and from 82.4% to 80.5% in the medium-risk category (p=0.003). In 
the high-risk category, the PPV declined from 73.2% to 70.6% (p=0.005), and although 
there was a decrease in the F1 Score from 81.6% to 79.9%, this was not significant 
(p=0.182). 

Performance by adverse outcome 

The Dawes-Redman algorithm’s ability to identify babies in a state of wellbeing did not 
vary meaningfully when evaluated across the ten discrete outcomes comprising the 
adverse outcome pregnancy cohort. The algorithm's accuracy was relatively consistent, 
across the range of outcomes, with the highest recorded for hypoxic-ischemic 
encephalopathy (HIE) at 58.0% and the lowest for neonatal sepsis and stillbirth at 50.0% 
(Supplementary Table 8). The sensitivity for identifying healthy, well babies was high 
across all conditions with a range of 83.4–99.7%. Specificity remained low across all 
outcomes, with respiratory conditions at the higher end (22.3%) and stillbirth at the lower 
end (0.3%). 

PPV remained consistently high at 99% or above for all conditions in the low-risk cohort. 
NPV varied more widely, with a higher value in HIE (28.4%). The F1 Scores were robust 
across all conditions, reflecting the algorithm's balanced detection capability wellbeing. 
These findings confirm the Dawes-Redman algorithm is suitable across a range of 
conditions when tasked with identifying fetal wellbeing. 

Discussion 
We detail here a comprehensive performance evaluation of the Dawes-Redman 
algorithm in term pregnancies and describe limitations. The Dawes-Redman algorithm is 
currently integrated into electronic fetal heart rate monitoring systems by principal 
manufacturers on a global scale.29,30,51 in the United Kingdom, this algorithm is utilised in 
upwards of 120 healthcare institutions and internationally it is distributed to over 110 
nations. This system is routinely employed in clinical decision making. However, there 
has been scant robust analysis of its performance using widely accepted clinical metrics, 
despite its prominence in obstetric care and national guidelines.32 

The results described in this study provide crucial insights for obstetric clinical practice. 
While the accuracy of the Dawes-Redman algorithm (its ability to correctly discern 
between healthy pregnancies and adverse outcome pregnancies) is relatively low, its 
sensitivity (ability to correctly identify healthy pregnancies) is high, exceeding 90% on 
average. When the Dawes-Redman criteria are met, it is a reliable indicator of the fetus 
being in a state of wellbeing. We have also demonstrated the algorithm is robust in 
identifying healthy pregnancies across an array of adverse outcomes and when evaluated 
with increasing time prior to delivery. However, the specificity of the algorithm (ability to 
correctly identify adverse outcome pregnancies) is low. It is important to note the Dawes-
Redman algorithm was not originally developed, and therefore not intended, to identify 
at-risk pregnancies. Thus, a high degree of caution should be maintained when 
interpreting any FHR trace failing to meet the Dawes-Redman criteria, and this finding 
should therefore prompt further assessment of the fetus by other modalities. 
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The underlying prevalence of healthy pregnancies in the obstetric population is crucial 
and must be acknowledged in clinical practice. The population prevalence of healthy 
pregnancies varies throughout clinical practice, dependent on factors such as obstetric 
history, clinical presentation and examination – even which clinic the pregnant woman is 
attending. Both positive and negative predictive values (PPV and NPV) are dependent on 
the prevalence of the outcome of interest – here fetal wellbeing. The PPV in the very low 
risk population (99% healthy outcomes) was greater than 99%. Therefore, when 
evaluating the F1 score (the average of sensitivity and PPV), the performance of the 
system approximated 95%. In these scenarios, the Dawes-Redman algorithm is more 
reliable. However, we have shown that predictive performance declines when the 
population prevalence of fetal wellbeing decreases. In a high risk cohort (30% adverse 
outcome and 70% healthy outcome), the PPV decreased to 73% and consequently the 
F1 score receded to 80%. In this scenario, the utility of the Dawes-Redman system is 
more limited. It is important users of this algorithm are aware of this. While it is neither 
pragmatic nor reasonable for the clinician to know exact prevalences in routine practice, 
this study demonstrates why appreciating the effect of prevalence is paramount. 

We have therefore developed the following conclusions and recommendations: 

1. The Dawes-Redman algorithm performs well in its intended purpose: identifying a 
fetus in a state of wellbeing, i.e. not at immediate risk of an adverse outcome. This 
is particularly true in a population for which the underlying probability of a normal 
outcome for the pregnancy is already high – its most common clinical application. 

2. Diagnostic performance of any clinical investigation is dependent on the 
underlying probability (i.e. prevalence) of the outcome of interest. Modelling the 
effect of prevalence on the performance of the DR algorithm confirms this is just 
as true for the Dawes-Redman algorithm. The practitioner should consider the 
pre-test probability of normality on a case-by-case basis when interpreting the 
results of this system. 

3. Failure of a pregnancy to meet the Dawes-Redman criteria is of limited clinical 
utility in the context of predicting adverse pregnancy outcomes. The ten Dawes-
Redman criteria are strict. Failure to meet these criteria is a non-specific indicator 
of marginally increased risk. Expert clinical opinion always supersedes the Dawes-
Redman algorithm. Any doubt or uncertainty surrounding the wellbeing of a fetus 
should always be an indication to the practitioner to seek expert obstetric opinion 
, regardless of the result from the Dawes-Redman algorithm. 

4. There is a pressing need for the development of FHR analysis algorithms aimed 
at identifying at-risk or high-risk pregnancies. 

This is a robust, large-scale study, however there are important limitations. While the data 
were acquired over 30 years of obstetric care using myriad fetal heart rate monitoring 
devices from different manufacturers, a multicentre, ideally international, study would 
further bolster these results. We also note that the longevity of a Dawes-Redman ‘criteria 
met’ result is not yet known. Therefore the results of this study should not be extrapolated 
beyond the 48 hour window we have examined here. This study utilised retrospective 
data. While the data were collected in a pseudo-prospective manner, i.e. a dedicated 
team of midwives and clinicians validated and entered these routine clinical data into a 
dedicated study database on a weekly basis, the gold standard would be a prospective 
multicentre study. Given the relative paucity of certain adverse obstetric outcomes (e.g. 
stillbirth occurs in 3.9 births per 1,000 total births in the UK), we estimate the sample size 
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needed for such an undertaking would need approximately eight years. We have already 
begun such an undertaking at an international obstetric hospital. 
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Tables 

   
   

   
Da

w
es

-R
ed

m
an

 
 Pregnancy outcome 

 Healthy Adverse 

Criteria met (positive) 45.9% 
(45.2–46.5) 

42.2% 
(41.4–43.0) 

Criteria not met (negative) 4.1% 
(3.5–4.8) 

7.8% 
(7.0–8.6) 

   

Table 1: Confusion Matrix for Dawes-Redman Analysis at term. 4,196 FHR traces 
from healthy (N=1,820) and adverse (N=1,560) outcome pregnancies were analysed. 
The datasets were balanced for fetal sex and gestational age when the trace was 
performed, resulting in a balanced dataset of 2,098 traces in each group. For the 
adverse pregnancy outcome group, only traces acquired within 48 hours prior to 
delivery were used. See Supplementary Table 2 for a definition of the confusion matrix. 
Values are expressed as a percent (%) with 95% confidence intervals.  
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Performance Metric % (95% CI) 

Accuracy 53.7 (52.6–54.7) 

Sensitivity 91.7 (90.4–92.9) 

Specificity 15.6 (14.0–17.3) 

Very low risk 99% normal outcomes, 1% adverse outcomes 

Positive predictive value 99.1 (99.1–99.1) 

Negative predictive value 1.9 (1.6–2.3) 

F1 Score 95.2 (94.5–95.9) 

Low risk 90% normal outcomes, 10% adverse outcomes 

Positive predictive value 90.7 (90.5–90.9) 

Negative predictive value 17.4 (14.8–20.2) 

F1 Score 91.2 (90.5–91.9) 

Medium risk 80% normal outcomes, 20% adverse outcomes 

Positive predictive value 81.3 (80.9–81.7) 

Negative predictive value 32.1 (28.2–36.3) 

F1 Score 86.2 (85.5–86.9) 

High risk 70% normal outcomes, 30% adverse outcomes 

Positive predictive value 71.7 (71.2–72.2) 

Negative predictive value 44.7 (40.2–49.5) 

F1 Score 80.5 (79.8–81.2) 

Table 2: Performance of the Dawes-Redman algorithm at identifying normal healthy 
pregnancies and adverse outcome pregnancies at term. Each adverse outcome 
FHR trace was from a pregnancy that was subsequently delivered within 48 hours of 
monitoring. Each was matched by gestational age and fetal sex with a corresponding 
trace from a healthy outcome pregnancy, not necessarily delivered within the same 
time window. Four theoretical risk groups were evaluated: very low risk, low risk, 
medium risk and high risk to demonstrate how prevalence of outcomes affects 
performance. These groups denote the underlying prevalence of a ‘normal’ and 
‘adverse outcome’ pregnancy and demonstrate how the performance of the algorithm 
changes when the prevalence of normality decreases in the population while the 
prevalence of adverse outcomes increase. As prevalence of normal pregnancies 
decrease, the performance of the algorithm declines substantially from an F1 score of 
95.2% in the very low risk group to 80.5% in the high risk group. 
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 Hours before delivery  

Performance Metric 0–24 24–48 p-value 

Accuracy 56.6 (55.2–58.1) 51.3 (50.0–52.6) 0.008 

Sensitivity 92.2 (90.5–93.8) 91.9 (90.2–93.6) 0.898 

Specificity 21.1 (18.8–23.6) 10.7 (8.8–12.7) 0.001 

Very low risk 99% normal outcomes, 1% adverse outcomes  

Positive predictive value 99.1 (99.1–99.2) 99.0 (99.0–99.1) 0.48 

Negative predictive value 2.7 (2.1–3.4) 1.3 (1.0–1.8) 0.082 

F1 Score 95.5 (94.6–96.4) 95.3 (94.4–96.3) 0.882 

Low risk 90% normal outcomes, 10% adverse outcomes  

Positive predictive value 91.3 (91.0–91.6) 90.3 (90.0–90.5) 0.006 

Negative predictive value 23.2 (19.2–27.9) 12.9 (10.0–16.4) 0.079 

F1 Score 91.7 (90.8–92.6) 91.1 (90.1–92.0) 0.637 

Medium risk 80% normal outcomes, 20% adverse outcomes  

Positive predictive value 82.4 (81.9–82.9) 80.5 (80.0–80.9) 0.003 

Negative predictive value 40.4 (34.9–46.5) 25.0 (20.0–30.6) 0.065 

F1 Score 87.0 (86.0–87.9) 85.8 (84.8–86.7) 0.346 

High risk 70% normal outcomes, 30% adverse outcomes  

Positive predictive value 73.2 (72.5–73.9) 70.6 (70.0–71.2) 0.005 

Negative predictive value 53.7 (47.9–59.9) 36.3 (30.0–43.1) 0.057 

F1 Score 81.6 (80.6–82.5) 79.9 (78.9–80.8) 0.182 

Table 3: Comparing the Performance of the Oxford Dawes-Redman algorithm at 
identifying healthy and adverse outcome pregnancies between 0–24 and 24–48 hours 
before delivery. Analysis was performed for two time windows: those in which a FHR trace 
was performed between 0–24 and 24–48 hours prior to delivery of the adverse outcome 
pregnancy. Each adverse outcome FHR trace was matched by gestational age and fetal 
sex with a corresponding trace from a healthy outcome pregnancy, not necessarily 
delivered within the same time window. Four theoretical risk groups were evaluated: very 
low risk, low risk, medium risk and high risk to demonstrate how prevalence of outcomes 
affects performance. These groups denote the underlying prevalence of a ‘normal’ and 
‘adverse outcome’ pregnancy and demonstrate how the performance of the algorithm 
changes when the prevalence of normality decreases in the population while the 
prevalence of adverse outcomes increase. As prevalence of normal pregnancies decrease, 
the algorithm’s ability to identify babies in a state of wellbeing declines substantially. 
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 Figure 1: Performance of the Oxford Dawes-Redman system with changing prevalence of healthy outcome 

pregnancies delivered within 48 hours of FHR monitoring.  As the prevalence of healthy outcome pregnancies 

changes, the positive predictive value (PPV), negative predictive value (NPV) and F1 score change accordingly.  
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