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Abstract

We introduce an irregular network structure into a model of frictional, on-the-job search

in which workers find jobs through their network connections or directly from firms. We show

that jobs found through network search have wages that stochastically dominate those found

through direct contact. In irregular networks, heterogeneity in the worker’s position within

the network leads to heterogeneity in wage and employment dynamics: better-connected

workers climb the job ladder faster. Despite this rich heterogeneity from the network struc-

ture, the mean-field approach allows the problem of our workers to be formulated tractably

and recursively. We then calibrate a quantitative version of our mechanism, showing it is

consistent with several empirical findings regarding networks and labor markets: jobs found

through networks have higher wages and last longer. Finally, we present new evidence con-

sistent with our model that job-to-job switches at higher rungs of the ladder are more likely

to use networks.
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1 Introduction

How do workers find jobs and does it matter? In this paper, we study an equilibrium search

model in which some jobs are found through network connections and workers differ in their position

within the network. In our framework, jobs may be found by direct contact with a firm or through

a searcher’s network, but the latter method draw fundamentally different and better offers. There

are two reasons. First, because we assume network connections pass along wage offers like their

own, offers passed through network search come from workers who have already selected wages

and climbed the ladder. The second reason comes endogenously from the interaction between

network structure and on-the-job search: Job referrals come disproportionately from workers who

are more central to the network and these better-connected workers have more access to better

jobs and thus even higher wages. The heterogeneity presented in our model, workers’ network

position, implies both differences in workers’ finding rate and differences in the distribution from

which they sample wage offers. Finding rates differ because better-connected workers have more

connections from whom to draw a referral. Draw distributions differ because better-connected

workers samples more frequently from the network distribution. To understand this mechanism,

we show analytically how network search affects equilibrium on-the-job search, then illustrate its

features in a calibrated version and discuss how the model relates to common empirical findings

associated with job referrals and network search.

The model is able to tractably incorporate two methods of search, direct contact and network

referral, along with heterogeneity associated with the latter. This tractability comes from our

ability to summarize a worker’s network position into a scalar state variable, her number of ties.

To do so, we employ the mean field approach, which amounts to a set of assumptions over the

network and information structure to omit local correlation and neighborhood effects.1 Rather,

agents will use the global network structure to take expectations over their peers’ types. This

simplifies the state while still preserving the network’s influence in an equilibrium we term a

“Sufficient Recursive Equilibrium” because it uses a sufficient, scalar statistic to summarize the

worker’s network position.

Our principal theoretical result shows that the equilibrium wage offer distribution via social

networks first-order stochastically dominates the wage offer distribution via direct search. Under-

lying this result, we showed that the reservation wage is decreasing and employment rate increasing

in the number of connections. Therefore, well-connected individuals are more likely to be employed

and the distribution of referrals disproportionately weights these network-central peers. The dis-

tribution of offers hence comes from a weighted average of wages of employed workers, one that

1The mean field approach is a technique to analyze the long run or average behavior of a complex system
and it was first developed for use in statistical physics to analyze the Ising model of interacting charged particles
(see Vega-Redondo (2007) for a summary). By replacing the effect of nearby particles with the “average” effect
of the magnetic field, one can solve for the equilibrium field, without need to consider the potentially intractable
interaction of local effects.
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dominates the overall wage distribution of employed workers which dominates the distribution of

offers. Introducing network search also affects the equilibrium wage and offer distributions by

reducing firms’ profits. This occurs because the lowest wage firm shrinks as its workers, who are

more likely well connected, are more quickly poached away. With falling profits fall at the lowest

wage level, free entry implies they also fall throughout.

Because our model includes both network search and direct contact search, it is a useful frame-

work for understanding the differences between a job found via network search and direct. Our

model is consistent with many empirical findings about these differences.2 In particular, jobs found

through a worker’s network have (i) higher wages and (ii) longer employment duration and (iii)

workers experience shorter unemployment spells. These are all predictions of our model. Network

search brings higher wages both because network offers come from a better distribution and also

because those who find a job through their network tend to be better connected, a composition

effect. Employment duration is longer because these higher wages are higher on the job ladder.

Again because of composition, unemployment spells are shorter; those who find through networks

are better connected and have faster finding rates. While many other studies attribute features

these to information frictions,3 we show that network heterogeneity and a job ladder are sufficient.

We also contribute to the empirical literature by introducing findings from the Survey of Consumer

Expectations (SCE). A prediction central to our model is that network search becomes increasingly

important at higher rungs of the job ladder. In fact, with the SCE, we find direct evidence of this:

higher paid workers are more likely to find their next job via a referral, and we use the rate this

likelihood increases as quantitative discipline in our calibration.

There is an extensive literature about frictional labor markets and wage dispersion. The basis

for our model, Burdett and Mortensen (1998), develops a wage-posting model in which firms offer

high wages to attract workers from other firms and to reduce worker turnover. Their main result

is an equilibrium with wage dispersion even if workers and firms are identical. Wage dispersion

is produced by the possibility of on-the-job search. Wage offers generally exceed the reservation

wages and firms can attract more workers from other employers. Under the assumption of equal

profits for firms that offer different wages, it is possible to obtain an equilibrium where the wage

distribution is not degenerate on the common reservation wage. While Burdett and Mortensen

(1998) introduce a version with reservation heterogeneity, this has quite different features than our

network heterogeneity and so for simplicity, our benchmark comparison will be the pure-dispersion

version.

To match empirical wage distributions better than Burdett and Mortensen (1998), a list of

2A large empirical literature has shown that labor market networks play an important role in matching workers
to employers. Even though estimates of the percentage of jobs found through social contacts vary across location
and profession, they consistently range between 25% and 80% of jobs in a given profession (see, for instance, Holzer
(1988), Ioannides and Datcher Loury (2004), Bayer et al. (2008), Hellerstein et al. (2011)).

3Many principally empirical papers ascribe their findings, network search leads to longer-lasting matches at
higher wages, to network connections ameliorating information frictions. See Granovetter (1995); Kugler (2003);
Datcher (1983); Marmaros and Sacerdote (2002); Simon and Warner (1992); Dustmann et al. (2015)
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papers including this one introduces additional heterogeneity. Postel-Vinay and Robin (2002)

distinguish three sources of wage dispersion: productive heterogeneity of workers, productive het-

erogeneity of firms and search frictions. All three sources are quantitatively important, and worker

and employer heterogeneity are both required to explain the observed shape of earnings distribu-

tions. This is echoed in other search models capturing wage dispersion with worker and potentially

firm-level heterogeneity; equilibrium on-the-job search models can match the wage distribution and

provide a sizable role for person effects, individual-level heterogeneity, that interact with search

frictions (see, e.g. Bontemps et al. (2000), Postel-Vinay and Turon (2010), or Bagger et al. (2014)).

Contributing to this literature, our model introduces a dimension that increases wage dispersion

and was previously treated as unobserved heterogeneity.

Theoretical models of of labor market networks generally assume that there are information

frictions that hinder the job search behavior of unemployed workers and/or firms, and that in-

formation flows through networks. In models such as Calvo-Armengol and Jackson (2007) and

Ioannides and Soetevent (2006) job searchers can learn about job vacancies either directly from

employers or indirectly via employed individuals among their network contacts, but unemployed

workers do not have full information about job vacancies. In equilibrium, better-connected job

searchers are more likely to find employment and to have higher wages. In Montgomery (1991), the

information imperfection is on the employer side. Employers do not have full information about

the quality of job applicants and firms learn about a potential worker’s ability if the firm employs

individuals from the potential worker’s network. In equilibrium, individuals are more likely to

receive and accept wage offers from businesses that employ others in their network.

Several very relevant papers consider the contribution of network search to wage inequality.

Mortensen and Vishwanath (1994) considers a Burdett and Mortensen (1998) model but in which

sometimes a worker draws from the earnings rather than the offer distribution. Our concept of

a referral is also a draw from the distribution of other workers’ earnings, however by adding an

irregular network we show how network draws are actually from a different distribution: Earnings

are weighted differently because one’s peers are not representative of the whole population. In

other words, our structure shows how network search adds another layer of inequality on top

of that in Mortensen and Vishwanath (1994). Galenianos (2014) presents a search model with

job referrals through a network and rich predictions about business cycle fluctuations and cross-

sector differences in measured vacancy yield. In it, networks also contribute to inequality and

worker dynamics depend on the network. But unlike our work, he considers a homogeneous

network, so differences in network location cannot contribute to wage dispersion. Fontaine (2008)

presents a matching model à la Pissarides (2000) where wage dispersion arises endogenously as the

consequence of the joined dynamics of networks, firms’ strategies and wage bargaining.

A great deal of empirical literature has studied the role networks play in the labor market, and

we see their findings largely consistent with our model’s implications. Here we briefly summarize

some of the empirical support for network search leading to (i) higher wages, (ii) longer employ-
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ment duration, and (iii) shorter unemployment spells. Using a direct measure of network quality

based on the employment status of close friends, Cappellari and Tatsiramos (2015) provide robust

evidence that a higher number of employed contacts increases wages for high-skilled workers form-

ing networks with non-familial contacts. Bentolila et al. (2010) analyze surveys from both the US

and Europe including information on job finding through contacts and find that network contacts

reduce unemployment duration by 1-3 months on average. Hellerstein et al. (2015) present evidence

that workers who are more residentially networked to their co-workers at the time of hire have

lower rates of turnover. They also provide evidence that labor market network strength is linked

to more rapid re-employment and re-employment at neighbors’ employers. Defining networks by

“co-displaced” workers, Cingano and Rosolia (2012) present evidence for Italy that employment

(re-employment) of other co-displaced workers in the network reduces unemployment duration.

There are related papers that study the effect of coworker-based networks and employee’s referrals

on individual labor market outcomes (see, for instance, Brown et al. (2013), Glitz (2013), and

Burks et al. (2015))

Our main contribution is to incorporate irregular networks into the labor market search and

matching process. In particular, by acknowledging the role of heterogeneity in network connections

we provide one reason that workers are not equally likely to locate an opening nor find the same

quality of job. We believe that this paper provides a framework to analyze wage dispersion and

unemployment as driven by (non-observable) worker heterogeneity in social connections. The

paper proceeds as follows. In Section 2 we introduce the main features and assumptions regarding

workers’ network and job information. Section 3 presents a model of labor markets with two

channels of information about job opportunities: direct search and social networks. In Section 4,

we discuss the steady-state equilibrium and the associated distributions. In this section, we also

compare our equilibrium conditions to those in Burdett and Mortensen (1998). Section 5 presents

the properties of the equilibrium and, in particular, we show that the earnings distribution of a

peer stochastically dominates the earnings distribution in the economy. Section 7 presents the

results from a calibrated version of our model where we explore the quantitative implications of

network search for wage and employment dynamics. Section 6 analyzes important empirical results

through the prism of our model. Section 8 offers concluding comments.

2 Demography, Network and Information Structure

2.1 Labor market characteristics

There are large fixed numbers of workers and employers participating in the labor market,

formally a continuum of each. The measure of workers is normalized to one. At a moment in time,

each worker is either unemployed (state i = 0) or employed (state i = 1). Workers have a wage

w ∈ W, where W ⊂ R+ is the firms posted wage offers set. The unemployed all have the same

benefit, b. We also define a worker’s history of wage offers through referral k ∈ W× R.
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A job offer represents a new position at a firm. Employed workers can hear about new positions

either at their own firms or at other firms. In the first case, the employed worker passes the job

information to her peers. This new job is identical to the job of the employed worker, so that

the worker who hears of it will not have any interest in taking the offer herself. Hence, this is

a model of referral. All job offers stand for one period only. If a job offer is declined, it expires

and the position is lost. Hence, referrals also last only one period, during which they are instantly

transmitted to other workers. Because search is random, each of those postings may be filled by a

currently employed or an unemployed worker.

An employed worker can only refer direct connections to jobs in her own firm. This relatively

simple transmission process precludes a multi-step job transmission and simplifies our analysis.

We focus instead on the role of the structure of the social network, rather than the technology of

the transmission process. Rather than passing along the referral, employed workers can also move

from lower- to higher-paying jobs if they find an offer from a higher-paying job.

2.2 Network Structure and Position

A network is a collection of nodes and links (sometimes called vertex and edges, respectively),

where each worker is a node, and an edge exists between two workers if job information may pass

between them. The number of edges a node has is called its degree. In general, networks may be

very complex, ranging from highly structured to highly random. One way to describe a network

is through its degree distribution, which gives the proportion of nodes that have each possible

degree. Thus, workers are heterogeneous in the number of peers to whom they are connected in a

social network. We assume that the network is described by the degree distribution Ω(z) and we

will focus on large, complex networks, so that z ∈ [1,∞).4 As we will show, this is sufficient to

summarize her type, given a set of assumptions.

The number of links will be centrally important and so to clarify notation, we will refer to the

number of links with several names depending on the role of the worker in the network when we

refer to her. When we use z to denote her number of peers, the worker is a generic agent. When

we denote the type as s it will refer to the number of links belonging to a peer of one of these

agents. When we refer to type t, we mean the number of links of an employee. Of course, any

agent plays all these roles.

To summarize the position of a worker in this network, her number of peers is, generically not

sufficient. In any generic network structure, we also would need to make explicit the connections

of these peers. Two workers with z peers may experience the network differently if these peers

have more or fewer connections, and so of course, this also applies to the connections of those

connections. Hence, in the next section, we discuss a worker’s state and how her number of peers

summarizes the relevant information to the worker in the network.

4This is common to approximate the discrete number of network connections with a continuous variable, so

rather than z ∈ 1, ...,∞ we use this half-closed interval.
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2.3 Workers’ state

In our environment, the workers’ labor-force status, wage and history of wage offers (i, w, k) is

not enough to characterize a worker’s state. To fully define a worker’s state, we will need to include

all of the attributes of the peers with whom she may interact. These peers may pass along job

openings and may themselves be passed job openings and the wage of these referrals will depend

on referrer’s wage. Let χ ∈ X summarize the relevant information to the worker in the network. It

includes all of the labor market information along paths. This is the worker’s collection of peers,

their labor market-relevant state, this information for the peers’ collection of peers, and so on.

Clearly, it is convenient to define χ recursively. Consider an individual whose number of direct

connections is z ∈ [1,∞). Then χ is a z × 4 object, which contains, for each connection indexed

c a quadruple (i(c), w(c), k(c), κ(c)) ∈ χ, i.e., the connection’s employment status i(c) ∈ {0, 1},

wage w(c) ∈ W, history k(c) ∈ W × R and that connection’s own position in the network κ(c).

For that connection c with s connections of her own, κ(c) is an s× 4-dimensional object.

2.4 Network and information assumptions

In what follows, we present and discuss network and information assumptions under which it is

possible to ensure that z is actually sufficient to summarize a worker’s state. Our approach relies

on an assumption about the class of network structure and two key assumptions on the information

structure.

Network Structure Assumption

We do not assume any particular degree distribution for our results; it may be finite or con-

tinuous, and our results apply to arbitrary degree distributions. We require, however, that the

network described by the degree distribution Ω(z), z ∈ [1,∞), be complex, in the following sense:

workers must not be able to infer too much information about the network and their peers from

their own position in the network. Assumption A.1 formalizes this.

Assumption (A.1, Network Structure). The network is connected, infinitely large and generated

by a configuration model consistent with a degree distribution Ω(z).

A well known property of networks generated according to assumption A.1 is that they are

locally tree-like. Equivalently, if we define the number of nodes as N , as it grows (N → ∞)

then for any path of finite length, the probability it is a loop approaches zero. With an infinitely

large network the probability of a loop is almost surely zero. This is the same as saying that any

finite-length path will not loop back to the original node and therefore there are no clusters in this

network. The following example illustrates this requirement.

Consider a highly structured network in which all workers are part of dense clusters of 6 workers,

connected to each one of 5 peers. Two of these 6 peers have a connection to another dense cluster

of 6 agents, and this continues ad infinitum. This may be visualized as clusters on a line, as in

Figure 1. Such a network has a discrete degree distribution; all workers will have either five or
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six peers, with the proportion of workers of type 6 being 2

6
. Knowing one’s own type, therefore,

conveys a great deal of information; a workers of type 5 knows that she is not one of the “bridge”

workers, and thus knows that each of her 5 peers is connected to one another, and two will be

bridges. Thus she may infer that their employment statuses will be highly correlated, and with a

long enough memory, she may learn which peers of hers are bridges. A worker of type 6 knows

she is a bridge, and thus knows 5 of her peers are in a dense cluster (one of whom is also a bridge

and one is in separate cluster, and may eventually learn which).

Figure 1: A highly structured network

Contrast this with a different network structure, constructed as follows: starting with a single

worker, endow this worker with either 5 or 6 peers, choosing 6 with probability 2

6
. For each

of this worker’s peers, endow them with either 4 or 5 peers, choosing 5 with probability 2

6
, ad

infinitum. This network may be visualized as a random tree, that continues forever, as in Figure

2. This network shares the same degree distribution as the former network, but workers cannot

infer anything from their own type - the types of their peers are independent of each other and

uncorrelated. This network is complex - the type of network we consider.

To implement assumption A.1, we consider random, complex networks in which agents believe

the social network they inhabit was generated by a so-called “configuration” model, a very general

process introduced by Bender and Canfield (1978). We follow the formulation of Chung and

Lu (2002) to randomly assign links.5 This procedure can generate large, complex networks with

arbitrary degree distributions.

It works as follows: for a fixed number N of nodes, fix a desired degree distribution Ω(z). Assign

5For further details, see Vega-Redondo (2007)
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Figure 2: A random tree network

to each node i weight Ω(i). For each pair of nodes ij, form a link between them at random, with

probability proportional to Ω(i)Ω(j). This procedure, as N rises, will generate a large, complex

network with the desired degree distribution. Networks generated by this process are almost all

trees, in that there is no local structure. To put this concretely, the probability a worker’s peers are

themselves peers vanishes and there are no correlations between node properties. In other words,

a node of degree j is not more likely to be connected to nodes of one type than another. Hence,

the degree distribution of a neighbor is the same for every neighbor, for every node.

In some sense, our network structure assumption A.1 also limits the information in the economy

because with a locally tree-like structure, a worker’s own degree does not convey any information

about the expected degree of her peers. This actually imposes some numerical restrictions on the

degree distribution, in particular, that it’s clustering coefficient goes to zero and the number of

links is small enough to be in the “critical region,” as described in Dorogovtsev et al. (2008). In our

implementation, we assume power-law distributions and so a single parameter governs both these

features. To ground ideas, networks that satisfy this restriction include those derived from scale

free, i.e. power-law, degree distributions when properly parameterized. In our numerical exercises

we will use this family also because of its empirical relevance (Vega-Redondo (2007), Newman
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(2004)).

Information Structure Assumptions

Next, we rely on two informational assumptions on what the worker knows of the network. To

set up notation, let a worker’s information set be I, which is equivalent to her state, (i, w, k, χ),

in the full information case. Assumption A.2 is that a worker cannot observe their peer’s state:

neither their position in the network, their employment status, nor their wage.

Assumption (A.2, Limited Observability). For any worker with information set, I, χ /∈ I but

||χ|| ∈ I.

As we will show, the effect of this assumption is to “anneal” the network: similar to redrawing

the network each period, workers will need to take expectations over the state of their connections.

When they form these expectations, however, we will limit them only to use the structure of the

economy. Our next assumption A.3 limits their memory and ensures that this inference can be

based only on global averages.

Assumption (A.3, Limited Memory). For any worker whose information set is I, k /∈ I.

By assuming workers cannot recall the sequence of job offers from their peers, they can only

use the structure of the economy, including the degree distribution and expected distributions of

labor market variables to form a belief about the value of a job passed from a peer. The worker’s

state, and information set, is now (i, w, z).

With these assumptions, we can introduce an important result that makes the rest of the model

considerably more tractable. Assumptions A.1-A.3 allow us to use the “degree-based mean field

approach,” replacing idiosyncratic local effects with “expected” average effects. The important

implication is that rather than χ characterizing a worker’s position in the network, her number of

connections z is sufficient. Workers of type (i, w, z) are treated as an equivalence class.

Proposition 1. In a network described by A.1 and given information assumptions A.2 and A.3,

the degree z is sufficient to characterize an agent’s network position, χ.

The proof, which also uses model features introduced below, is given more completely in Ap-

pendix A, showing how the full information problem reduces to use only the worker’s state and

information set (i, w, z). We sketch its intuition here. Our Assumption A.1 applies the “degree-

based mean field approach” (see Pastor-Satorras et al. (2015)) to the network structure. This

means that workers with the same number of connections are in equivalent positions in the net-

work graph in expectation. However, for a given realization, two workers with equal numbers of

peers will differ both because the number of connections their connections have may differ and

because the labor market status of these connections may differ. Assumption A.2 establishes that

a worker cannot directly observe these features of her peers and therefore must form expectations

when she solves her optimization problem. Imposing that workers take expectations is equivalent
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to “annealing” the network, as if the connections were redrawn every period. Assumption A.3

prevents a worker from inferring additional details of their position based on the history of re-

ferred offers. Now, the expectations formed by any worker with z connections will be the same,

which takes workers whose network location is equivalent in expectation to be actually equivalent.

Therefore, workers with the same number of connections form an equivalence class because there

is no usable information about a worker’s network. And, hence, a worker’s number of connections

z is sufficient to characterize her position in the network.

3 A Model of Search and Networks in Labor Markets

3.1 Network Search Technology

In this section we will present job and offer flows with a search technology in which network

and direct search co-exist. Because we use the degree-based mean field approach, we have a

relatively parsimonious network structure which allows us to characterize worker types simply by

their number of links and therefore to present most of the model objects using this scalar quantity

as the dimension on which workers are ex ante heterogeneous.

Workers learn about job opportunities when unemployed and when employed. Job information

is acquired through either direct search or a worker’s social network. Job information arriving

directly from employers depend on a worker’s current employment state. Let γi denote the arrival

rate of direct offers while a worker has employment status i ∈ {0, 1}. These offers are drawn from

a firm offer distribution F (w).

Job offer information can also be acquired through a worker’s social network. The peers

distribution of types Ψ(s) is distinct from the overall distribution of types Ω(s) because those with

more peers are more likely to connected to the agent whose problem we solve. This is sometimes

called the paradox of friendship: a very general phenomenon of networks identified by Feld (1991),

implying that one’s friends are likely to have more friends than oneself. This is because agents with

many peers, and a large type s, are disproportionately likely to be one’s peers. The distribution

over peer types is given by Ψ(s) = sΩ(s)/〈z〉, where 〈z〉 =
´∞

z=1
zΩ(z)dz is the average degree in

the network.

We will define the distribution of types conditional on that one sending a referral as Ψ̃(s),

which will also generically differ from Ψ(s) because not all peers are equally likely to have sent a

referral. For a given worker with employment status i, the joint probability of a worker of type s

transmitting the offer and being a peer is γ1n(s)ν
s
Ψ(s), while the total probability of such an event

integrates over types s. Thus, canceling terms in the numerator and denominator the conditional

distribution of types is

Ψ̃(s) =
n(s)1

s
Ψ(s)

´

n(z)1
z
Ψ(z)dz

=
n(s)Ω(s)
´

n(z)Ω(z)dz

where the second equality results from substituting in the definition Ψ(s) = sΩ(s)
〈z〉

. Notice that this
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distribution puts more weight on the types who are more likely to be employed than the uncondi-

tional distribution Ω(z). Because better-connected peers receive offers out of unemployment more

quickly, this will tend to put more weight on higher z workers.

The probability a worker of type z in state i receives an offer via a peer in her social network

is, in discrete time
(

1−
[

1− νγ1
´

n(s)
s
Ψ(s)ds

]

z
)

. Taking the limit as the number of arrivals per

period goes to infinity, the continuous time arrival rate is

ρ(z) =

(

1− exp

(

−zνγ1

ˆ

n(s)

s
Ψ(s)ds

))

(1)

where ν is the probability at which job information is passed along.6 The probability ν can be

interpreted as a “socializing” parameter, representing how strongly tied to one another peers in this

network are and, hence, how likely they pass along a potential job.7 The arrival rate γ1 appears

because jobs to be passed are acquired in the same way as on-the-job search where the peer is

searching for her peers rather than herself. Given that ν is unbounded above, this assumption is

without loss of generality.

From equation (1) we can see already that heterogeneity in z implies heterogeneity in job

finding rates. The density of the network affects the finding rate in two ways. A job offer to be

passed arrives at rate γ1ν but is multiplied by 1
s
because every one of the peer’s connections entails

more competition with other workers connected to the same individual. On the other hand, if

the network is denser and searching workers have more connections z, they have more chances to

get an offer and hence faster finding rates. Note also how the mean field approach appears: we

integrate over the distribution of peers’ types Ψ(s), rather than knowing the actual number of

connections any of a searcher’s peers have. Furthermore, we take as separate, the probability an

offer arrives and the wage associated with that offer because assumption A.2 prevents worker from

observing the origin of the referral (otherwise that would tell the worker her connection’s wage).

The distribution of wages acquired through referral will be different from the offer distribution

F (w). Rather, it is a function of the equilibrium distribution of earnings by type and the employ-

ment rate by type. Let G(w, z) be the earnings distribution among agents with z links, or in other

words, the proportion of employed workers of type z earning a wage no greater than w. The wage

6Notice we are assuming that jobs are passed to peers at the same rate, regardless of employment status. We
could weaken this assumption, and allow ν

0
> ν

1 but this would complicate some proofs and require constraints
on 0 ≤ ν

0 − ν
1
< const, constraints we believe are loose in the empirically relevant range. We will discuss the

implications of relaxing this assumption in Proposition 4.
7This approach follows Calvo-Armengol and Jackson (2004). In words, the probability one of your peers passes

you job information depends on the job arrival rate, the socializing parameter ν, the average employment rate n,
and the average degree in the network 〈z〉. This captures both the benefit of there being highly connected peers
and the cost of more competition for this information. More-connected peers are likely to be employed and thus
pass information but they also have more potential recipients.
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distribution in the population is then

G(w)
.
=

ˆ

z

Ω(z)G(w, z)dz (2)

However, the type distribution, conditional on receiving a wage offer is not the same as the

population’s distribution. The expected distribution of referral wages is then

G̃(w) =

ˆ

s

Ψ̃(s)G(w, s)ds.

Hence, a job offer learned via a worker’s network is, therefore, a random draw from the endogenous

earnings distribution G̃(w) of a random peer weighted by the probability that a peer is actually

employed.

3.2 Households

We will consider separately workers who are employed and unemployed, so the workers’ value

function V (i, w, z) are split into V 0(z) and V 1(z, w). The state of the unemployed worker is her

number of connections z ∈ [1,∞) and the state of an employed worker is (z, w) ∈ [1,∞) × W.

Given the distribution of offers obtained through direct contact, F , and the distribution of earnings

that may be referred, G, the value function of an unemployed worker of type z is

rV 0(z) = b+ γ0

{
ˆ

w̄

R(z)

[

V 1(z, x)− V 0(z)
]

dF (x)

}

+ (1− γ0)ρ(z)

ˆ

w̄

R(z)

[
ˆ

s

Ψ̃(s)
∂G(x, s)

∂x

(

V 1(z, x)− V 0(z)
)

ds

]

dx, (3)

where r is the economy’s interest rate. In words, the value of an unemployed worker with z peers

is the unemployment benefit, the expected value of hearing about a job directly, plus the expected

value of hearing about a job from a peer.

Again taking F and G as given, the value function of an employed worker with z connections

and wage w is

rV 1(z, w) = w + δ
[

V 0(z)− V 1(z, w)
]

+ γ1

{
ˆ

w̄

w

[

V 1(z, x)− V 1(z, w)
]

dF (x)

}

+ (1− γ1)ρ(z)

ˆ

w̄

w

[
ˆ

s

Ψ̃(s)
∂G(x, s)

∂x

(

V 1(z, x)− V 1(z, w)
)

ds

]

dx. (4)

That is, the expected discounted lifetime income of a worker currently employed, with z peers

in her network, is her wage w plus the expected value of become unemployed plus the expected

value of hearing of a better job either directly from firms or through her social network. Her

job-search policy is simple, so we plugged into the value function in equation (4): she takes any

job offering wages greater than her current wage w.
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Given an offer w, an unemployed worker will accept it if it is higher than her reservation R(z),

which may endogenously depend on peers, z. If unemployed, the worker receives unemployment

benefits b. At the reservation wage R(z), we have that V 1(z, R(z)) = V 0(z). Plugging w = R(z)

into equation (4) and using equation (3), we obtain

R(z)− b =
(

γ0
− γ1

)

{
ˆ

w̄

R(z)

[

V 1(z, x)− V 0(z)
]

dF (x)

}

+
[

(1− γ0)ρ(z)− (1− γ1)ρ(z)
]

{
ˆ

w̄

R(z)

[
ˆ

s

Ψ̃(s)
∂G(x, s)

∂x

(

V 1(z, x)− V 1(w, z)
)

ds

]

dx

}

=
(

γ0
− γ1

)

{
ˆ

w̄

R(z)

V 1
x
(z, x) [1− F (x)] dx

}

−

[

(γ0
− γ1)ρ(z)

]

{
ˆ

w̄

R(z)

V 1
x
(z, x)(1− G̃(x))dx

}

(5)

where the derivative V 1
x
(z, x), using equation (4), is given by:

V 1
x
(z, x) =

[

r + δ + γ1(1− F (x)) + (1− γ1)ρ1(z)(1− G̃(x))
]

−1

. (6)

3.3 Firms

On the labor demand side, we will denote the average size of a firm whose employees have t

links and get paid a wage w as l(w, t). To construct this, we will look at flows in and out of a firm

by type.

Separation Rate : First looking at outflows, a firm offering wage w will lose workers to unem-

ployment at the exogenous separation rate δ. Workers at this firm will be directly contacted by

other firms at rate γ1, and the probability the firm they are contacted by offers a wage above w is

1− F (w). Workers at this firm are contacted by their peers at rate (1− γ1), and these peers will

communicate a job offer at a firm with a wage above w with probability ρ(z)(1 − G̃(w)), which

gives the probability an acceptable job offer is passed to that worker. Hence, the separation rate

β(w, t) is the sum of these terms:

β(w, t) = δ + γ1 [1− F (w)] + (1− γ1)ρ(t)(1− G̃(w)) (7)

and the mass of workers of type t leaving the firm is thus l(w, t)β(w, t).

Compared to Burdett and Mortensen (1998), where separations would be given by β(w) =

δ + γ1(1 − F (w)), there is an additional source of “poaching” of workers that depends on the

number of peers a firm’s worker have. This increases the outflow of higher type workers relatively

more than lower type workers.

Hiring Flows : Consider now recruiting to this firm. First, there is a flow of recruits via direct

contact. Unemployed and employed workers are contacted directly by firms at rate γ0 and γ1,
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respectively. These job contacts are spread among the 1
M

firms, and they will result in jobs for the

unemployed (employed) if the offered wage is above their reservation wage (current wage).

In our economy, there are Ω(z)(1− n(z))IR(z)≤w workers of type z that may be recruited from

unemployment at wage w where IR(z)≤w = 1 if R(z) ≤ w and zero otherwise. There are also

Ω(z)n(z)G(w, z) employed workers of type z earning less than w who may be recruited by this

employer. Direct recruiting is therefore given by

Ω(z)

M

{

[1− n(z)] γ0
IR(z)≤w + n(z)γ1G(w, z)

}

. (8)

Recruiting also occurs indirectly through the social network of a firm’s employees. Consider an

employed worker of type t at this firm, which employs l(w, t) such workers. An employed worker

may contact all t of her peers about job opportunities at her own firm. The total amount of

possible referrals made by these workers is ℓ(w, t)t, i.e., the more connections employees have, the

more referrals they will make.

Consider a given worker who is contacted by her employed peer. With probability Ψ̃(z) she

is of type z. With probability 1 − n(z) she is unemployed. With probability ν the job offer is

transmitted, and it will be accepted if the wage is above her reservation wage R(z). On the other

hand, with probability n(z), the worker contacted is employed. The job offer is then transmitted

with probability ν, and it will be accepted if the wage is above her current wage, which happens

with probability G(w, z). Thus, the indirect recruiting of workers of type z by employees of type

t of a firm paying w is given by

γ1ℓ(w, t)tΨ̃(z)
{

(1− n(z))IR(z)<wν + n(z)G(w, z)ν
}

.

Integrating this over t, we get the total volume of (indirect) recruiting of workers of type z from

all the firm’s current employees, i.e.,

ˆ

t

γ1ℓ(w, t)tΨ̃(z)
{

[1− n(z)] νIR(z)≤w + n(z)νG(w, z)
}

dt . (9)

Note that unlike direct recruiting, referrals are not spread evenly among the M active firms.

They are in a sense “targeted” because a firm with better connected workers will receive more

referred workers. The term ℓ(w, t) × t reflects how the firms’ current employees are not only

valuable because of their productivity (which is constant at 1), they are also valuable in how they

can recruit others. The labor force is, in this sense, the firms’ search capital. From the perspective

of the type z worker who will get the referral, this employed worker is her connection. This means

that connections are distributed by Ψ̃(·), so the firms worker passes referrals to more connected

workers. Combining Equations (8) and (9), the total hiring h(w, z) of workers of type z by a firm
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paying w is thus

h(w, z) ≡
Ω(z)

M

{

[1− n(z)] γ0
IR(z)≤w + n(z)γ1G(w, z)

}

+

ˆ ∞

t=1

γ1
× ℓ(w, t)tΨ̃(z)

{

(1− n(z))IR(z)≤wν + n(z)G(w, z)ν
}

dt. (10)

Compared to Burdett and Mortensen (1998), where recruiting would be h(w) = ((1 − n)γ0 +

nγ1G(w))/M , in our model recruiting also occurs indirectly through the social network of a firm’s

employees—current employees are the firms’ search capital. In this way, both hiring and separation

flows depend on the economy-wide wage distribution and the type distribution within a firm. The

additional terms imply that, with network search, high wage firms will have even faster hiring than

low wage firms because of their workers because, recall, well-connected workers climb the ladder

faster and are therefore more concentrated at high wage firms. Thus, network search will imply

a steeper size distribution and even larger high wage firms compared to Burdett and Mortensen

(1998).

Putting these together, the change in labor of type z is

ℓ̇(w, z) = h(w, z)− β(w, z)ℓ(w, z)

Because there is a range of workers with different numbers of employed peers z ∈ [1,∞) who

will earn a wage w, the total labor input per firm at this particular wage is given by

L(w) =

ˆ

z

ℓ(w, z)dz. (11)

An employer’s flow of revenue generated per employed worker is normalized to 1. The flow of

profits earned by a firm offering wage w is therefore

π = (1− w)L(w).

4 Steady State Equilibrium

We now discuss the steady-state equilibrium, what we call a Sufficient Recursive Equilibrium.

To build to this, we solve for the steady state wage, employment and firm-size distributions.

4.1 Employment and Wage Distributions

An equilibrium solution is a household solution, V 0(z), V 1(z, w) and R(z), in which we set

r = 0. Optimizing firm behavior implies a wage offer distribution F (w), such that every wage

in the support of F (w) is associated with the same maximizing profit π. Finally, both sides of

the market are consistent with the definitions of G(w, z) and n(z), the distributions of wages and

employment which we now define.
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The law of motion of the employment rate of a worker with z peers, n(z), is

nt+1(z) = (1− δ)nt(z) + [1− nt(z)]
{

γ0 [1− F (R(z))] + (1− γ0)ρ(z)
(

1− G̃(R(z))
)}

. (12)

To explain these terms, workers separate into non-employment at a rate of δ. The rate of meeting

from unemployment is γ0 + (1 − γ0)ρ(z) and the chance one of these is above the reservation is

either F (R(z)) or G̃(R(z)), depending on where the offer originates.

In steady state, nt+1(z) = nt(z) ≡ n(z), using equation (12). Hence, the steady state employ-

ment rate of such workers is:

n(z) =
γ0 [1− F (R(z))] + (1− γ0)ρ(z)

(

1− G̃(R(z))
)

δ + γ0 [1− F (R(z))] + (1− γ0)ρ(z)
(

1− G̃(R(z))
) , (13)

and the economy’s average employment rate is given by

N =

ˆ

z

n(z)Ω(z)dz . (14)

From the steady-state allocation of matches for each type z, the number of employed workers

receiving a wage no greater than w, G(w, z)n(z), can be calculated. Because this is the steady

state, its change must be equal to 0, which we write as follows:

0 = [1− n(z)]
[

γ0 {F (w)− F (R(z))}
]

+ [1− n(z)]
[

(1− γ0)ρ(z)
{

G̃(w)− G̃(R(z))
}]

− n(z)G(w, z)
{

δ + γ1 [1− F (w)] + (1− γ1)ρ(z)(1− G̃(w))
}

. (15)

This holds for any wage w, such that w ≥ R(z) for some z. Then we rearrange terms in

equation (15) to define G(w, z), obtaining

G(w, z) =
[1− n(z)]

{

γ0 [F (w)− F (R(z))] + (1− γ0)ρ(z)
{

G̃(w)− G̃(R(z))
}}

n(z)
[

δ + γ1 [1− F (w)] + (1− γ1)ρ(z)(1− G̃(w)
] (16)

From equations (13) and (16), the steady-state distribution of wages earned by employed work-

ers of type z is

G(w, z) =
δ
γ0[F (w)−F (R(z))]+(1−γ0)ρ(z)[G̃(w)−G̃(R(z))]

γ0[1−F (R(z))]+(1−γ0)ρ(z)[1−G̃(R(z))]

δ + γ1 [1− F (w)] + (1− γ1)ρ(z)
[

1− G̃(w)
] (17)

When compared to the classic Burdett and Mortensen (1998) model, whereG(w) = δ(F (w)−F (R))/(1−F (R))
δ+γ1(1−F (w))

,

we have an additional force that leads to hiring into higher wages, (G̃(w)−G̃(R(z))

(1−G̃(w))
. As long as G̃ < F ,
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as shown below, (G̃(w)−G̃(R(z))

(1−G̃(w))
<

(F (w)−F (R(z))
(1−F (w))

. Thus, even if overall finding rates were the same in

the two frameworks, the earnings distribution here mixes with another distribution that first-order

stochastically dominates it, and will therefore has more workers at higher wages.

4.2 Steady State Flow of Workers

In the steady state, the flow of workers of type z leaving this firm, equation (7), must equal

the flow of workers of type z entering this firm, equation (10), and we must have

l(w, z)β(w, z) = h(w, z) (18)

Notice that the steady-state condition, equation (18), represents the balanced (separation and

recruiting) flows of workers, with z peers, for a particular firm offering wage w. If w is below R(z),

no workers of this type will be recruited to this firm from unemployment. If there are no workers of

type z currently earning less than w, then G(w, z) = 0 and no workers of this type will be recruited

to this firm from other firms. The steady state level of employment of this type of worker, at this

firm, will then be zero—the wage w may not be high enough to attract workers of this type if they

have better opportunities. Notice however that this is an equilibrium phenomenon and depends

on both R(w) and G(w, z).

The equilibrium measure of workers of type z earning a wage w is either 0, if w < R(z), or

l(w, z) =
h(w, z)

β(w, z)
(19)

A firm offering wage w will attract workers of many different types. Let Z(w) be the set of

types such that if z ∈ Z then R(z) ≤ w, the workers who will accept a firms wage w. Hence, the

firm’s total labor force is given by

L(w) =

ˆ

z∈Z(w)

h(w, z)

β(w, z)
dz (20)

4.3 Equal profits and the domain of wages

As is common in wage posting models with heterogeneous reservation wages, the lowest offered

wage is not the lowest reservation wage. A firm offering the lowest wage solves a profit maximization

problem trading off profits from a lower wage against the types that might accept, resembling that

of Burdett and Mortensen (1998) in their version with heterogeneous reservation wages. It is

different however in that our dimension of heterogeneity also affects outflow rates to other firms

and the hiring rate from unemployment by this lowest-wage firm. The implication is that profit

in the lowest wage firm will not be proportional to the population distribution: the fraction of

workers whose reservation wage is greater than R. Then w = argmaxw(1−w)L(w) where L defines
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the labor force in the lowest-wage firm:

L(w) =

ˆ

z∈Z(w)

h(w, z)

β(w, z)
dz

=

ˆ

z∈Z(w)

Ω(z)
M

γ0(1− n(z)) +
´

t
γ1ℓ(w, t)tdtΨ̃(z)(1− n(z))ν

δ + γ1 + (1− γ1)ρ(z)
dz. (21)

h(w, z) is the flow of recruits to this firm and β(w, z) is a measure of workers of type z leaving the

firm (separation rate). We omitted the indicator function IR(z)≤w because we are only integrating

over z ∈ Z, where IR(z)≤w = 1. Notice this firm does not recruit from other firms, because any

employed workers are already earning at least w. Instead, they hire only from unemployment and

among those types whose reservations wage is sufficiently low. They lose to poaching any worker

who receives another offer because this offer is higher, almost surely.

In Burdett and Mortensen (1998) with heterogeneous reservation wages, the lowest wage was

determined by maxw(1− w) Pr[z < z : R(z) = w] because L(w) ∝ Pr[z < z : R(z) = w], but this

is not the case in our model. In that model the labor force depends only on the constant fraction

that may recruited directly from unemployment
´

z : R(z)≤w
Ω(z)γ0(1 − n(z)), while here there is

also network recruiting. Because network recruiting happens at rate ν
´

γ1ℓ(w, t)tdt, even if labor

supply of each type t were proportional to the population density of that type, hiring would not

be.

At the top of the wage distribution, the separation rate for a firm offering w̄ is simply δ, i.e.,

β(w̄, z) = δ. Firms paying the highest wage in equilibrium will lose workers only to unemployment,

not to other firms. On the hiring side, however, this firm recruits directly or indirectly all types

of workers from all other firms as well as from the unemployment pool. Since F (w̄) = 1 and

G(w̄, z) = 1, the total hiring h(w̄, z) of workers of type z by a firm paying w̄ is

h(w̄, z) =
Ω(z)

M

{

[1− n(z)] γ0 + n(z)γ1
}

+ ν

ˆ

t

γ1ℓ(w̄, t)tΨ̃(z)νdt (22)

Note that the employment rate of potential recruits n(z) only controls the contact rate, i.e., the

rate at which employed and unemployed workers are contacted about job opportunities.

The equilibrium measure of workers of type z earning wage w̄ is l(w̄, z) = h(w̄, z)/δ and the

total labor force of a firm offering the highest wage w̄ in equilibrium is given by

L(w̄) =

ˆ

z

h(w̄, z)

δ
dz , (23)

which does not depend on w̄, except that it must be the highest offered wage.

With free entry in equilibrium, every wage offered, regardless of worker type, must yield the

same steady-state profit. In other words, the steady-state profit flow of a firm offering the lowest

wage in the market (w) must be equal to the profit of an employer paying the highest wage in
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equilibrium (w̄):

π∗ = [1− w]L(w) = (1− w̄)L(w̄) (24)

4.4 Equilibrium Definition

We are now ready to present our definition of the Sufficient Recursive Equilibrium. We call

this equilibrium concept “sufficient” because it is defined using z, the number of peers to whom

a worker is connected in a social network, as a sufficient statistic for the worker’s position in the

network. The more general equilibrium, in which the worker’s network state is given by a much

more complicated object (χ) is described in Appendix A. There, we prove that our framework

exploits the mean-field approach to reduce the meaningful heterogeneity to z.

Definition 1. The state of the unemployed worker is her number of connections z ∈ [1,∞) and

the state of an employed worker is (z, w) ∈ [1,∞) × W, where W ⊂ R+ is the firms posted

wage offers set. A Sufficient Recursive Equilibrium is the unemployed searcher’s value function

V 0 : [1,∞) → R, the worker’s value function V 1 : [1,∞) × W → R and the reservation wage

R : [1,∞) → R, a level of profit at each posted wage π : W → R+, a distribution of posted

wage offers F : W → [0, 1], the employment distribution n : [1,∞) → [0, 1] and workers’ earnings

distribution G : W× [1,∞) → [0, 1] and, such that

1. the value functions V 0(z), V 1(z, w) and the reservation wage R(z) satisfy equations (3), (4)

and (5), respectively,

2. every wage drawn from the firm’s offer distribution F (w) is associated with the same steady

state profit, i.e., π = (1 − w)L(w) = π̄, ∀ w ∈ W. The bounds of W are determined by

equations (21), (23) combined with equation (24), and

3. the employment distribution n(z) and the workers’ earnings distribution G(w, z) are consis-

tent with equations (13) and (16), respectively.

The principal task of solving for an equilibrium is now to find the distribution, F , for posted wages

that is consistent with equal profits. This distribution must be consistent with separation flows in

Equation 7 and the equal profit condition.

4.5 Equilibrium wage dispersion

We have thus far focused on equilibria with wage dispersion. For most of the parameter space,

this is the unique equilibrium because there is always a profitable deviation from a degenerate

wage distribution. Our argument takes two parts, first imagining all of the mass at 1 and then

taking the mass is at w̄ < 1. Essentially, this is the same argument for the existence of a unique

equilibrium with wage dispersion in a model similar to Burdett and Mortensen (1998).

If w̄ = 1 is the maximum and minimum wage, then π = 0. Consider a deviation with w = 1−ǫ.

The labor at this firm is given by Equation (21) which is strictly positive for any value of ρ(z)
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so long as ∃z : R(z) ≤ 1 − ǫ. Then π(1 − ǫ) = (1 − 1 + ǫ)L(1 − ǫ) > 0 and the deviation was

profitable, hence the distribution cannot be degenerate at the competitive wage.

Suppose instead that w̄ < 1 is the only wage in equilibrium. Consider then a deviation of

w = w̄ + ǫ, which will be able to poach any worker from firms offering w̄. This means that steady

state L(w̄ + ǫ) will be given by Equation (23), while L(w̄) is as in Equation (21). Because 1 − w

is continuous, ∃ǫ such that (1 − w̄)L(w̄) < (1 − w̄ − ǫ)L(w̄ + ǫ): there exists a sufficiently small

deviation that will still attract a much larger work force.

As in Mortensen and Vishwanath (1994), if a large enough fraction of the job finding comes

through referrals then there may be a degenerate wage distribution with mass at the competitive

wage. There exists a large enough ν, such that ρ(z) is uniformly high enough so that π both falls

to 0. In our environment, the conditions for this situation are not easily summarized, but can be

numerically verified.

5 Properties of the Equilibrium

Our principal result relates the wage distributions passed via network search to those obtained

via direct search. It states that the distribution of offers from a peer stochastically dominates the

offer distribution obtained directly from firms. To establish this stochastic dominance result, we

first show that the reservation wage of workers is decreasing in their type. It follows from this

result that the employment rate of a worker is increasing in her type, i.e., her number of peers and,

because the expected distribution of referral wages weights these worker more, this distribution

dominates the wage distribution in the population. We are then ready to show that the referral

wages distribution also first-order stochastically dominates the offer distribution - our main result,

Proposition 3. All proofs can be found in the proofs appendix, Appendix A.

Lemma 1. The reservation wage R(z) is decreasing in z:
∂R(z)
∂z

≤ 0.

In principle, this need not be so; the faster job finding rate of higher type workers might lead

them to increase their selectivity, and so have a higher unemployment rate than workers who are

less selective due to their lower network job finding. In equilibrium, however, their job finding rate

via networks is fast enough that they are more willing to accept lower wage jobs and forgo the

faster job finding that comes from off-the-job rather than on-the-job search than workers of lower

type. From this follows the fact that the employment rate n(z) is increasing in z.

Lemma 2. The employment rate n(z) is increasing in z:
∂n(z)
∂z

≥ 0.

Workers of higher type are in equilibrium more likely to be employed, due to both fast job

finding and their lower reservation wage. In equilibrium, high type workers climb the job ladder

so quickly, and the firms offering such low wages are so small, that workers of higher type still

have higher earnings than those of lower type. Thus, the employment rate is increasing in z,
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and because G̃ places greater weight on types with a higher employment rate, this leads to the

stochastic dominance of G by G̃.

Proposition 2. G̃(w) first-order stochastically dominates G(w).

This result is driven by the network structure of the labor market. Workers of higher type

are more likely to be your peer than workers of lower type. They are also more likely to earn

higher wages of workers than lower type. Thus, the wages earned by peers are even higher than

the wages earned by a typical worker. Thus the “friendship paradox” - that the average peer has

more friends than the average worker - is an additional source of the benefit of network search over

direct search, beyond simply sampling G(w) rather than F (w). We thus have that the distribution

of jobs found via networks first-order stochastically dominates the distribution of direct job offers

from firms.

Proposition 3. G̃(w) first-order stochastically dominates F (w).

Because referred jobs are from workers already on the wage ladder, G will naturally first-order

stochastically dominate F , a feature that can be found in the original Burdett-Mortensen model.

Proposition 2 goes further to say that not only are the wages of employed workers better than

wages found via direct search, but jobs referred by peers are better than jobs sampled randomly

from employed workers.

This additional offer distribution G̃, qualitatively different from the direct contact offer distri-

bution F (w), is unique to our model with ν > 0. In Proposition 4, we look at comparative statics

in ν to understand how this change affects other equilibrium objects in the model. We evaluate

these starting at ν = 0 because that is how we nest the standard Burdett-Mortensen model in

ours. This makes ν = 0 useful because we understand analytically the solution to the model and

allows for compares between our model to the well-known benchmark.

Proposition 4. Evaluated at ν = 0, for sufficiently high γ1,

1. the interval of wages gets wider,
∂w

∂ν
≤ 0 , ∂w̄

∂ν
≥ 0

2. firms at the lowest wages get smaller and at the highest wages they get larger,
dL(w)
dν

≤ 0 and
dL(w̄)
dν

≥ 0

3. profit declines dπ

dν
≤ 0.

Proposition 4 shows that introducing network search gives workers additional bargaining power

because large high-wage firms increase disproportionately. Increasing ν, the probability at which

job information is passed along, makes the lowest wage firms smaller because they lose workers to

higher wage firms that are better at recruiting through networks. 8 This lowest wage firm also

8We define a sufficient but not necessary condition on γ
1 relative to α, γ

0 that ensures this.
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choose a lower optimal wage, because the reservation wage policy is decreasing in ν, just as it

was in z. We use an envelop-like condition to show that though w declines, L(w) shrinks enough

that equilibrium profit is lower for all firms. The top end moves consistently: if low wage firms

are smaller because they are losing workers to poaching, high wage firms get larger by recruiting

though their network. Because these firms are getting larger, but profit is getting smaller they also

must be offering higher wages. Proposition 4 summarizes these arguments made through a series

of Lemmas in Appendix A.6.

6 Numerical Results

We now describe the results from a calibrated version of our model. With this numerical

solution, we will explore the quantitative implications of network search for wage and employment

dynamics, focusing in particular on how heterogeneity in the number of contacts affects the model’s

endogenous outcomes such as the wage offer distributions and wage growth paths. We first describe

a unique dataset on network search from the New York Federal Reserve’s Survey of Consumer

Expectations (SCE). Then, we describe the features of the model itself and numerically compare

the solution to a similar model without network search, i.e., a Burdett-Mortensen benchmark.

Next, we compare the results of a model where workers all have the same job finding rates to one

in which there is finding rate heterogeneity. And finally, we use the model to explore and discuss

some empirical results about network search and job finding through labor market networks.

6.1 Survey of Consumer Expectations and the network finding rate

In this survey, the Federal Reserve Bank of New York asks households a battery of questions

about their expectations regarding their own future and the economy. There is also a once a

year labor supplement with detailed questions about job search and, particularly useful for our

purposes, the methods of search they are using and have used (see Armantier et al. (2017) for a

general description of the data and Faberman et al. (2017) for the labor market supplement).

A useful feature of the SCE is that it includes the prior search method of currently employed

workers: Employees are asked how they found their current job. We categorize each worker by

whether they found their job through a job referral, and whether that came from a professional

connection.9 In the sample 23% of jobs were found through networks and the rest through a

variety of methods. Beyond details of the search process, we also have data on the earnings and

characteristics of this job, earnings in the job they left and what caused their separation. More

details of our sample selection and summary statistics are available in Appendix B.

For our calibration section, we will use a key feature of this data: The probability a worker

finds her next job through network referral is increasing along the wage ladder. This is to say,

9Specifically, the SCE categorizes referrals as those from business associates or from “a friend or relative.” We

take the former as a referral. This is more consistent with our model which is really about professional networks

and more in line with prior work emphasizing the importance of weak-ties.
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conditional on changing jobs, it is increasingly likely that job was found via referral. Between

the 5th and 95th percentile of the earnings distribution, a worker at the bottom of the earnings

distribution, workers are about 6 percentage points less likely than average to find their next job

via their network. Whereas, at the top of the earnings distribution, they are 5 percentage points

more likely. Both of those figures control for observable characteristics of the recruiting firm. We

return to this result in Figure 3 with its model counterpart.

To quantify the elasticity of network finding to prior wage, in Table I we estimate the probability

of finding a job via network search as follows

Pr[Network find] = f(β1salaryik + β2smallj + β3J2Jij + β4PTij).

Here, k indexes the prior employer, while j indexes the employer to which the worker goes. The

effects are quite strong: If a worker changes jobs, her likelihood of utilizing a network would

increase by about 6 pp if her salary were one standard deviation, 0.9 log points, above the mean.

We will discuss in greater detail why this is the case, but heuristically, there are two reasons for

this increase. First, at higher wages workers are more likely to be well connected and hence sample

more frequently from the network distribution. Second, because the network-search offer distribu-

tion first-order stochastically dominates direct-search offer distribution it becomes an increasingly

share of acceptable poaching offers at higher wages.

(1) (2) (3) (4)
Log prior employer salary 0.0643∗∗∗ 0.0584∗∗∗ 0.0570∗∗∗ 0.0645∗∗∗

(3.08) (2.85) (3.28) (3.07)

<500 employees 0.0123
(0.29)

Voluntary Job-to-Job 0.0803∗∗

(2.39)

Part-time 0.0068
(0.08)

Firm Size Dummies X X
Industry Dummies X X X
Observations 544 544 544 544
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table I: Estimated marginal effects, replacing prior earnings in equation 34

6.2 Calibration

To first normalize some parameter values, we choose b = 0 and the mass of firms M = 1. The

rest of the parameters are jointly calibrated using flow rates from the CPS and data on network
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finding from the SCE. Particularly, we need values for ν, γ0, γ1, δ and the distributional parameter

α. These will be exactly identified by five moments of the data.10

Three of our moments are standard labor market search moments: the unemployment rate,

the rate at which unemployed workers find jobs and the rate at which employed workers find jobs

with new employers. We introduce parameters ν, α, however, that are specific to our environment

with network search. Roughly speaking, ν governs how common are referrals, and we target 24%,

the fraction of hires by a network contact in our SCE data. In terms of our model elements this

moment is defined as

0.24 =

´

z

´

w
l(w, z)

´

∞

t=1
γ1ℓ(w, t)tΨ(z)

{

(1− n(z))IR(z)<wν + n(z)G(w, z)ν
}

dtdwdz
´

z

´

w
h(w, z)dwdz

.

Though our theory accommodate an arbitrary degree distribution, we use a power-law distribution

for Ω(z):

Ω(z) = (α− 1)z−α,

where the power-law exponent α determines how heavy the tail of the distribution is, i.e., how

common are nodes with much higher than the mean number of peers.1112 For α < 2, the mean

degree in the network diverges (the tail is “too heavy”), while for α > 3.48, the network is so

sparsely connected that the “giant component” will not exist; in this case, workers will not all be

path-connected to each other in the network.13

To identify this parameter, we use the increase over the job ladder in the probability of finding a

job via network. The intuition being that inequality in the network structure changes the difference

in composition between high wage and low wage matches while also changing the degree to which

G̃ dominates F , both of which contribute to the increase in network finding rate at higher wage

jobs.14

Table II presents our baseline calibration parameters, above the line those are those jointly

calibrated and below are the ones set without solving the model. We verify via 448 random

restarts of the calibration routine that these are the globally optimal, unique parameters.

In Figure 3, we show how those who move to a new job are, at higher wages, increasingly

likely to do so via their network. This figure plots (1−γ1)ρ(z)(1−G̃(w))

γ1(1−F (w))+(1−γ1)ρ(z)(1−G̃(w))
, which is increasing

10As mentioned in Section 3.1, we constrain the arrival rate on and off the job to be the same for network and di-
rect contact offers, i.e., ν1 = ν

0. We could relax this and introduce more moments, which would be computationally
trivial but significantly complicate the proofs. For consistency, there will be only ν.

11A power law with exponent α is thus equivalent to a Pareto distribution with shape α− 1 and scale 1.,
12Power-law networks have been identified and studied in a variety of contexts, including empirical social net-

works. For example, the patterns on friendship on Facebook were found to be well-described by a power-law in
Ugander et al. (2011).

13For a discussion of so-called “phase transitions” in complex networks, see Vega-Redondo (2007), Hofstad (2016).
14A reasonable alternative strategy would be to use hazard profiles, similar to Menzio et al. (2016). However,

there are many reasons for heterogeneity in finding rates and we worry about overstating the degree of network
heterogeneity by matching our distribution to all of this dispersion.
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Parameter Value Moment Model Data

γ0 0.24 Average finding rate out of unemployment 0.24 0.25
γ1 0.10 Average finding rate from employment 0.02 0.02
ν 0.04 Fraction of hires through the network 0.13 0.23
α 2.34 Slope of network finding rate 0.26 0.25
δ 0.13 Average separation rate into unemployment

Table II: Baseline calibration parameters and targets

in w for any given z. As we have discussed, this result is a direct consequence of G̃ first-order

dominating F , so that as we get higher in the distribution, there is more mass left in 1− G̃(w), the

probability of a dominating network offer, than in 1−F . Both G̃ and F distributions are induced

in equilibrium, but G̃ is most sensitive to α - it becomes steeper as the network becomes more

connected, which is controlled by α.

0.0 0.2 0.4 0.6 0.8
Wage quantile

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06 SCE Data
Model

Figure 3: The increase in the probability that a worker’s next job will be found through network-
search, model and data.

6.3 Characteristics of the solution

The most important features of our model are the two ways labor market networks affects the

job search of an individual worker. First, better connected workers find jobs more quickly. The

probability a worker of type z, receives an offer via a peer in her social network is an increasing,

concave function defined in equation (1). Given our calibration of ν and α the arrival rate via

network for the average worker is 8.3% and one with double the average number of links gets offers

at 15.9%.

The second effect is that workers draw from a different offer distribution when they search for
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a job. Offers through the network have higher wages, a result shown in our theoretical result,

Proposition 3. The distribution of offers found through a worker’s network, G̃(w), first-order

stochastic dominates the distribution, F (w), from which the direct searcher finds her job. This

was because the earnings distribution G dominates the offer distribution F , and also because the

distribution of wages among connections G̃ dominates G. Because workers with more connections

draw more often from this dominant distribution, their unconditional distribution dominates those

with fewer connections. This is visualized in Figure 4.

Figure 4 plots distributions for both methods, direct contact and network search, against the

distribution of wages. Notice the direct contact line is above the 45◦ because F > G. The network

search line is slightly below 45◦ though it is visually difficult to see. The black lines in Figure

4 are weighted averages of two distributions F and G̃. The better-connected worker draws more

often from G̃, so her average puts more weight on the dominating distribution G̃ compared to

F . Not only does a better-connected worker draw more offers, she also draws from a better offer

distribution.
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Figure 4: Average distribution of wage offers by contact method conditional on number of peers

To step inside the mechanism through which G̃ dominates F , recall that G̃ weights conditional

earnings distributions by the relative employment share, rather than their population weights.

Better-connected workers, who have higher wages and higher employment therefore dominate the

distribution. Figure 5 illustrates this point by plotting the employment rate and average wage by

a worker’s number of peers z. Both are increasing, so G̃ puts increasing weight on populations

whose wages are higher than the average.

A key result of our network structure—some workers have better access to G̃, which dominates

F—is that some workers climb the ladder more quickly. To demonstrate this idea, we will consider
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Figure 5: Employment rate (Left Axis) and average wage within overall distribution (Right Axis)
both increase with network connectedness

the half-life before an employed worker’s wages are expected to converge on the upper-most wage,

w̄. As in any model with a job ladder, as a worker’s wage increases, she is decreasingly likely to

get an offer that dominates and so the speed at which she climbs the ladder is also decreasing.

Hence, a good measure of the instantaneous rate a worker is climbing the job ladder is the half-life,

which measures half of the expected time to converge to wage w̄ with wages growing at their

instantaneous rate given wage w and connections z. To be specific, the half-life is log 2
λ(w,z)

, where the

instantaneous convergence rate, λ(w, z), is

λ(w, z) = − log

(

w̄ − E[w′(w, z)]

w̄ − w

)

Figure 6 illustrates how quickly the wage will approach the maximum wage w̄. Each line

conditions on the starting wage and traces how the expected time to reach the maximum wage

decreases as the number of connections increases. This figure highlights that the effect of a better

network is stronger at high wages, i.e. the slope is steeper. At these high rungs, the chance of a

worker getting a dominating wage offer through the direct offer distribution is quite low compared

with the chance of getting one through network search. This result is due to the fact that 1−F (w)

gets considerably smaller than 1 − G̃(w) when w is high. This feature is also demonstrated in

Figure 3, where we saw the worker’s next accepted job offer is increasingly likely to come from the

network as a she climbs the wage ladder.

From another perspective, well-connected workers’ fast rise implies that high wage firms have

better connected workers than those at the median. On the other hand, the lowest wage firms also
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Figure 6: Half-life of wage growth paths to maximum wage: different starting wages, labeled by
their quantile in the overall offer distribution, and different network connections z.

have mostly highly connected workers because they have a lower reservation wage. This leads to an

asymmetric U-shape in types by firm posted wage. Despite having many well-connected workers,

the very low wage firms still hire mostly via direct contact rather than referrals because γ0 is large

relative to either γ1 or ρ(z). Thus a firm hiring mostly from unemployment is not hiring much via

referral. But, as wages rise and firms’ workforce becomes better matched, this additional search

capital implies they can poach workers from other firms much more effectively.

Figure 7 plots the fraction of a firms’ hiring that comes through referrals, which rises monoton-

ically with the posted wage. The highest wage firm has workers with almost 50% more connections

than the median wage firm, and these are very effective at recruiting connections. This is also

caused by a selection effect, that well-connected workers get more offers and are therefore more

likely to rise to the highest wage firms.

6.4 Comparison to heterogeneous finding rates

To isolate how network heterogeneity affects the wage draw distribution from the frequency

of draws, we consider a version with only heterogeneous finding rates and homogeneous offer

distributions. We keep the distribution of finding rates on and off the job implied by (γi, ρ(z)) but

we integrate over the implied offer distributions to take F and the average sampling from G̃. This

creates a new offer distribution,

F i

HS
(w) =

ˆ

z

γiF (w) + (1− γi)ρ(z)G̃(w)Ω(z)dz.

To highlight the differences between our model and one with only heterogeneous finding rates,

29



0.0 0.2 0.4 0.6 0.8 1.0
Wage quantile

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
ac

tio
n 

hi
re

d 
by

 re
fe

rra
l

Figure 7: The fraction of hires coming from referrals at each wage.

Figure 8 plots half-lives until reaching w̄, as before. The blue lines are the half-lives to the top

wage if only finding rates differ and the black lines are the half-lives presented in Figure 6 for

the network search model. With network search, the half-life decreases more quickly in z than if

workers were only different in the arrival rate of offers. Those with higher numbers of peers climb

the ladder faster because of faster offer arrival rates and also because the distribution from which

they draw stochastically dominates both the distribution of offers for those with fewer peers. The

crossing point between the blue and black lines is the point at which a type-z offer distribution

begins to stochastically dominate the average offer distribution F
1

HS
.

7 Understanding some empirical findings

Empirical work often find that networks are important to job-seekers’ outcomes. Here, we

discuss how these findings can be generated by different offer distributions and differences in the

composition of workers who find jobs through their network. We restrict our attention to three

main results in the literature and analyze them through the prism of our model. A body of empir-

ical studies present evidence that a worker whose job is found through her network has a higher

wage, a longer employment duration and a shorter unemployment spell. These regularities are

often attributed to the information that network connections better convey to potential employ-

ers (e.g. Simon and Warner (1992), Topa (2011), Cappellari and Tatsiramos (2015), Marmaros

and Sacerdote (2002), and Dustmann et al. (2015)), but we show and illustrate numerically that

such results can also be generated in a job-ladder model with heterogeneity in network peers, as

presented here.

Our model highlights two channels through which network-found matches are different than
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Figure 8: Half-life until the maximum wage comparing heterogeneous search rates and the network
search model. Network search has shorter half-lives because better connected workers also draw
from a better distribution.

those found by direct contact. First, when a worker finds a job through her own network it implies

that she drew from a different (better) wage distribution and as we have shown, G̃ first-order

stochastic dominates the distribution F from which the direct searcher finds her job.

The other, more subtle ex post reason why network-found matches are different is because they

tend to be found by different types of people. A worker who found a job through network search

had a higher arrival rate, lower reservation wage and better draw distribution because those who

had found jobs through networks have, on average, more peers. The intuition is that one with more

network connections gets proportionally more of her draws from the network distribution than a

worker with fewer links. Then when we see the pool of searchers who found a job through peers,

more of those are better-connected. Figure 9 demonstrates this idea in the calibrated model by

plotting the log density of the number of peers conditional on whether a worker finds a job (either

job-to-job or through unemployment) through network or direct contact search. The compositional

differences will drive the observational differences across finding method.

Table III illustrates the expected differences between workers finding jobs through network or

direct contact search. Above the line, the table lists statistics for workers finding jobs through

unemployment and then job-to-job transitions are below the line. Workers who find jobs via their

network of contacts have on average more peers, spend less time searching and should expect a

higher initial wage than those workers who become employed through direct contact search. We

see this effect very clearly in the two rows giving the average number of connections, z of those

who make a transition from unemployment or job-to-job relative to the average at risk population.

A worker who finds a job from unemployment via networks has more than 4 times as many
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Figure 9: Log density of the number of peers conditional on having found a job by direct contact
search or network search.

peers as the average unemployed person, while a worker making a job-to-job transition through

network search has about 2.5 times as many as the average employed person. The difference comes

from two sources. First, the stock of unemployed people disproportionately have low numbers of

peers. Second the direct and referral offers distributions are both basically completely acceptable

to unemployed workers, thus a worker who finds a job through network must have a very high

ρ(z), whereas as a worker climbs the job ladder the network search distribution, G̃ is becoming

increasingly likely to be the main source of dominating offers, regardless of ρ(z).

Both network search effects, the composition and draw distribution, imply that network-found

jobs have higher wages. These forces are at odds however as they affect expected duration. The

higher matched wage itself, within the job-ladder structure, implies these jobs found through the

network are expected to last longer. On the other hand, a worker who finds a job through her

network probably has more peers and therefore, conditional on , finds another job more quickly

and has a shorter tenure at the first job. Quantitatively, the job-ladder effect dominates, and so

jobs found via network search last longer. Longer match duration is consistent with empirical

evidence from Hellerstein et al. (2015).

Figure 10 shows the expected duration of a job match conditional on wage for direct contact

search and network search. Table III suggests the expected duration of job matches are longer for

workers who find jobs through their network, i.e., have longer tenures, but this is purely because

they match at a higher rung on the job ladder. Conditional on wage, a match formed through a

network contact has only 77% of the average expected duration because these workers are better-

connected and therefore have higher offer arrival rates. Unconditionally, however, these matches
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last more than twice as long because they are at higher wages and hence have a lower probability

of a dominating offer.

Composition alone makes unemployment duration shorter for workers who find jobs through

network search. This is a direct corollary of Lemmas 1 and 2, where we showed better connected

workers had higher finding rates from unemployment. Then, unemployed workers who find jobs

through their network are likely to have more peers, and therefore have a higher ex ante finding

rate.15 This feature of our model is consistent qualitatively with evidence from Cingano and

Rosolia (2012). However the quantitative effects in our model are small; Table III shows there is

only about a 5% decrease in unemployment duration.

Network Search Direct Search

Average z relative to unemployed 4.14 0.93
Expected wage qtile; from unemployment 0.251 0.075
Search time relative to average search time 0.951 1.001
Average z relative to employed 2.67 0.80
Expected wage qtile; job-to-job 0.444 0.224
Expected duration of job match 4.87 years 2.70 years

Table III: Expected differences between workers finding jobs through network or directed search.
Above the line describe finding from unemployment, below adds features of job-to-job transitions.
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Figure 10: Expected duration of a job match conditional on wage: Direct search and network
search.

15Qualitatively, this model also implies a downward sloping unemployment exit hazard rate. The composition

of the unemployment pool becomes worse connected at higher durations. Quantitatively, the effect is small.
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8 Conclusion

In this paper, we have explored how network search affects wage and employment dynamics.

We embedded the well documented evidence jobs are found through networks into an equilibrium

wage posting model with on-the-job search. In our model workers hear about job opportunities

through their social networks and direct contact . Heterogeneity in the worker’s position within the

network leads to heterogeneity in wage and employment dynamics: better-connected workers climb

the job ladder faster and recover more quickly if they fall. These workers also pass along higher

quality referrals, which benefits their connections. In our environment, wage offer distributions are

natural consequences of frictions in the job information propagation mechanism through different

channels. Differences in job finding rates and reservation wages are a function of a worker’s position

in the social network because the number of connections governs how quickly a worker can expect

to find a referral from a peer. This feature alone provides a micro-foundation for finding-rate

heterogeneity; but further, we show that network-based search is important for the type of jobs

that are found.

We present network and information assumptions under which it is possible to ensure that

the number of peers to whom a worker is connected in a social network is actually sufficient to

summarize a worker’s state, her position in the network. We show that the wage offer distribution

via social networks first-order stochastically dominates the wage offer distribution via direct contact

search. Job offers learned from a worker’s peers are endogenously better than those a worker would

likely find through direct contact search. In our calibration exercise, we show how a workers differ

based on whether they found their job through network or direct contact search. Those who

find jobs through network-search generally have more peers than a worker who found her job via

direct contact search. This different composition then manifests itself in different labor market

transitions. Because those who found a job through network search have more peers, they find

jobs from unemployment more quickly. Once employed, a worker who found her job through her

network, and is therefore better-connected, experiences a higher wage growth for the rest of her

career than another who found an equivalent job through direct contact search.

Our analysis has abstracted from many quantitatively important factors, particularly firm-side

heterogeneity and other types of worker-side heterogeneity. It is, however, a very flexible starting

point to which these other features can be grafted. Our approach, simplifying the state using the

mean field approach makes many rich models with network search tractable. We hope that, in

the future, it can be used to study how network heterogeneity affects classic questions regarding

worker-side heterogeneity such as earnings inequality and unemployment duration dependence.

Furthermore, network search can be uniquely useful in understanding measured vacancy yields

which across sectors and time.
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A Proofs Appendix

A.1 Proof of Proposition 1

In this section we will describe the value functions of the worker’s problem under the full

information structure described in section 2.4, and show that the imposition of Assumptions A.1-

A.3 simplify these functions to the model analyzed in section 3. Without imposing Assumptions

A.1-A.3, the worker’s state consists of their employment status i, wage w, the history of wages

offers they have received, k, and recursively, each of these states for each of their peers, i.e. their

network position χ. In this setting, a worker’s degree z is not sufficient to characterize their

network position; two workers of the same degree z may have peers whose own network position

κ is very different, and who thus face a different value of job search via networks. The rate of

contact from a particular peer, c of type κ(c), where s = ||κ(c)|| is given by

i(c)γ1ν

s

The probability that this peer c is the one that passes a job is a binomial random variable,

that depends on the realization of the job contact probabilities from the entire set of peers. For

example, it may be that exactly j of the worker’s z peers attempt to transfer a wage offer, and

with probability 1
j
this particular peer of type i, w, k, κ is successful.16 Call this probability p(c).

rV 0(k, χ) = b+ γ0

ˆ w̄

R(χ)

V 1(x, k, χ)− V 0(k, χ)dF (x)

+ (1− γ0)

ˆ

c

p(c)
(

V 1(w(c), k, χ)− V 0(k, χ)
)

Iw(c)≥R(k,χ)dc (25)

rV 1(w, k, χ) = w + δ
[

V 0(k, χ)− V 1(w, k, χ)
]

+ γ1

ˆ w̄

w

V 1(x, k, χ)− V 0(k, χ)dF (x)

+ (1− γ1)

ˆ

c

p(c)
(

V 1(w(c), k, χ)− V 1(w, k, χ)
)

Iw(c)≥wdc (26)

Note that the integrations in these value functions are over the known state of each peer of

the worker, so our notation c is more explicitly written as (i(c), w(c), k(c), κ(c)) ∈ χ. The only

uncertainty is in the problem arises from the friction of the wage transmission procedure, not in

the positions or wages of peers.

16In this case, the worker with complete information still receives only one job at random in the event that

multiple jobs offers are passed to him; she cannot choose, for example, the highest wage offer, even though she

knows which peer has the highest wage. We interpret this as a remaining friction in the labor market, even with

complete information on the state. One can imagine alternative offer selection procedures, but this would change

the wage dynamics drastically from our baseline model, and are not pursued here.
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A.1.1 Limited Observability

We now consider the worker’s problem when she has limited information on the status of her

peers. We will first impose Assumption A.1, that the network was generated according to the

configuration model taken to the infinite limit, and Assumption A.2, that the worker does not

know the state of any of her peers. Under these assumptions, the worker knows only her own

history of wages, and may use this information, along with nature of the configuration model, to

infer the network position κ of each of her z peers, and therefore their employment status and

wages.

Because she no longer knows the wages of her peers, she cannot distinguish which of them may

have passed her particular wage offers in the past. She must therefore view each peer as a draw

from a peer type distribution. In the infinite limit of the configuration model of network formation,

the network is locally tree-like17; The types of each of her peers are independent of each other;

they are independent draws from some type distribution. She will form a belief of this distribution

that depends on her history k; call her belief that a given peer is of type s Ψ(s|k). Importantly

the type of peer c is s(c) rather than s(c), k(c) because the peer’s own history of offers does not

affect the offers she refers.

Each peer of type s is herself the root of a tree whose first generation is of size s, and whose types

are drawn from some distribution. The subsequent generations of this tree - the peers of a worker’s

peers - she will believe are drawn from a different distribution than Ψ(s|k); this is because her

local information is less informative the further from her immediate peers the tree progresses. The

“offspring” distribution of the branching process that describes her network position is therefore

not IID across generations, and each worker’s idiosyncratic history k will lead to a different belief

about her local network position.

Under this information structure, the probability that at least one of her peers passes her a job

is given by

ρ(z, k) =

(

1− exp

(

−z

[
ˆ

s

n(s)γ1
ν

s
Ψ(s|k)ds

]))

(27)

She can no longer assign different probabilities of being passed an offer to each peer, as she

cannot distinguish one peer from another, but she can come to expect that the probability of being

passed any job at all may be higher or lower, as her own history brings her to believe her peers are

17See Dorogovtsev et al. (2008) and Hofstad (2016) for a discussion of the “tree ansatz” method for complex
networks.
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of higher or lower degree s. Under these assumptions, the household value functions are given by

rV 0(k, z) = b+ γ0

ˆ w̄

R(k,z)

(V 1(x, k, z)− V 0(k, z))dF (x)

+ (1− γ0)ρ(z, k)

[
ˆ

s

[
ˆ w̄

w

(V 1(x, k, z))− V 0(k, z))Pr(x|s, k)dx

]

Ψ(s|k)ds

]

rV 1(w, k, z) = w + δ
[

V 0(k, z)− V 1(w, k, z)
]

+ γ1

ˆ w̄

w

V 1(x, k, z)− V 0(k, z)dF (x)

Each worker of type z and history k will form an expectation of the types s of each of their

peers, and the wages they might be passed by such a peer. Her belief about the distribution of

wages of a random peer is given by Pr(w|s, k), and will depend on that peers own type s and her

history k.

A.1.2 Limited Memory

Under Assumption A.3, workers can no longer recall their history of wage offers, and so can no

longer update their beliefs about the types of their peers beyond what can be inferred from the

structure of the network. Because she can no longer condition on the history k, the worker’s value

function of being unemployed is given by

rV 0(z) = b+ γ0

ˆ w̄

R(z)

(V 1(x, z)− V 0(z))dF (x)

+ (1− γ0)ρ(z)

[
ˆ

s

[
ˆ

x

(V 1(x, z))− V 0(z))Pr(x|s)dx

]

Ψ(s)ds

]

rV 1(w, z) = w + δ
[

V 0(z)− V 1(w, z)
]

+ γ1

ˆ w̄

w

V 1(x, z)− V 0(z)dF (x)

+ (1− γ1)ρ(z)

[
ˆ

s

[
ˆ w̄

w

(V 1(x, z))− V 1(w, z))Pr(x|s)dx

]

Ψ(s)ds

]

.

The distribution of peer types s is now simply the peer type distribution Ψ(s); the worker’s

idiosyncratic history is forgotten, so she does not believe her peers are any different than the av-

erage peer in the network; furthermore, she will believe that the distribution of the types of her

peers’ peers are also no different than that of the average peer. The “offspring distribution” of the

branching process that describes her network position is the same for every worker: Ψ(s), inde-

pendently identically distributed across nodes and across generations. Workers only meaningfully

differ in the size of the first generation of this process, z, so each worker of type z has the same

belief about her local network position.

The distribution of wages conditional on s, Pr(x, s), is now ∂G(x,s)
∂x

, so that the value functions

coincide exactly with section 3. Taken together, these assumptions amount to the worker behaving

as though the types of her peers are drawn anew every period, as if the network were randomly

rewired every period. In this “annealed” network (as opposed to the realized, or “quenched” net-
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work), the degree-based mean-field dynamics correctly characterize the network, and each worker’s

state is fully characterized by (i, w, z).

A.2 Proof of Lemma 1

Lemma 3. The reservation wage R(z) is decreasing in z:
∂R(z)
∂z

≤ 0.

Proof. The reservation wage R(z) of worker of type z is defined by

R(z) = b+ (γ0
− γ1)

ˆ

w̄

R(z)

Vx(z, x)(1− F (x))dx−

(

(γ0
− γ1)ρ(z)

)

ˆ

w̄

R(z)

Vx(z, x)(1− G̃(x))dx

and it’s derivative is therefore given by

R′(z) =(γ0
− γ1)

(
ˆ

w̄

R(z)

∂Vx(z, x)

∂z
(1− F (x)) dx+ V 0(z) (1− F (R(z)))R′(z)

)

−(γ0
− γ1)ρ(z)

(
ˆ

w̄

R(z)

∂Vx(z, x)

∂z
(1− G̃(x))dx+ V 0(z)(1− G̃(R(z)))R′(z)

)

−(γ0
− γ1)ρ′(z)

ˆ

w̄

R(z)

Vx(z, x)(1− G̃(x))dx

Solving for R′(z), we have

R′(z) =
Q

1 + (γ0 − γ1)V 0(z)(1− F (R(z)))− (γ0 − γ1)ρ(z)V 0(z)(1− G̃(R(z)))
(28)

where

Q =(γ0
− γ1)

(
ˆ

w̄

R(z)

∂Vx(z, x)

∂z
(1− F (x)) dx

)

−(γ0
− γ1)ρ(z)

(
ˆ

w̄

R(z)

∂Vx(z, x)

∂z
(1− G̃(x))dx

)

(29)

−(γ0
− γ1)ρ′(z)

ˆ

w̄

R(z)

Vx(z, x)(1− G̃(x))dx

The denominator of Equation (28) is positive. It is in fact the value of the integrand that defines

R(z) evaluated at its lower bound, and so it is positive. Hence, to show that R′(z) ≤ 0, it suffices

to show that Q ≤ 0. Since Vx(z, w) is given by

Vx(z, x) = (r + δ + γ1(1− F (x)) + (1− γ1)ρ(z)(1− G̃(x)))−1,

we have
∂Vx(z, x)

∂z
= (−1)(1− γ1)ρ′(z)(1− G̃(x))(Vx(z, x))

2.

We can write the integral in the first, second and third terms of Q (Equation 29) as
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ˆ

w̄

R(z)

(γ0
− γ1)

(

(−1)(1− γ1)ρ′(z)(1− G̃(x))(Vx(z, x))
2
)

(1− F (x))dx

ˆ

w̄

R(z)

−(γ0
− γ1)ρ(z)

(

(−1)(1− γ1)ρ′(z)(1− G̃(x))(Vx(z, x))
2
)

(1− G̃(x))dx

ˆ

w̄

R(z)

−(γ0
− γ1)ρ′(z)Vx(z, x)(1− G̃(x))dx

Since these integrals are all over the same domain, we can combine them, so that the sign of R′(z)

depends on the sign of the integrand in the definition of Q, which is

(γ0
− γ1)

(

(−1)(1− γ1)ρ′(z)(1− G̃(x))(Vx(z, x))
2
)

(1− F (x))

−(γ0
− γ1)ρ(z)

(

(−1)(1− γ1)ρ′(z)(1− G̃(x))(Vx(z, x))
2
)

(1− G̃(x)))

−(γ0
− γ1)ρ′(z)Vx(z, x)(1− G̃(x)) (30)

We can write the terms in expression (30) as, respectively

(

(1− γ1)ρ′(z)Vx(z, x)(1− G̃(x))

)(

(γ0
− γ1)(−1)Vx(z, x)(1− F (x))

)

,

(

(1− γ1)ρ′(z)Vx(z, x)(1− G̃(x))

)(

(−1)(γ0
− γ1)ρ(z)(−1)Vx(z, x)(1− G̃(x))

)

,

(−1)(γ0
− γ1)ρ′(z)Vx(z, x)(1− G̃(x))

Collecting terms, we can write this as

(

(1−γ1)ρ′(z)Vx(z, x)(1−G̃(x))

)

(−1)

(

(γ0
−γ1)Vx(z, x)(1−F (x))−(γ0

−γ1)ρ(z)Vx(z, x)(1−G̃(x))+1

)

Since the expression (1− γ1)ρ′(z)Vx(z, x)(1− G̃(x)) ≥ 0, the sign depends on

(−1)

(

(γ0
− γ1)Vx(z, x)(1− F (x))− (γ0

− γ1)ρ(z)Vx(z, x)(1− G̃(x)) + 1

)

Notice that (γ0 − γ1)Vx(z, x)(1− F (x))− (γ0 − γ1)ρ(z)Vx(z, x)(1− G̃(x)) is in fact the integrand

that defines R(z), which must be non-negative from the definition of the value function, that is,

that Vx(z, x)(1−F (x)) =
(

V 1(z, x)−V 0(z)dF (x)
)

. Thus, due to the leading (−1), this expression

is negative, so that Q ≤ 0, and thus R′(z) ≤ 0, as was to be shown.

A.3 Proof of Lemma 2

Lemma 4. The employment rate n(z) is increasing in z:
∂n(z)
∂z

≥ 0.
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Proof. Let P (z) be the job finding rate out of unemployment:

P (z) = γ0(1− F (R(z)) + (1− γ0)ρ(z)(1− G̃(R(z)))

Then, by Equation (13), n(z) is given by

n(z) =
P (z)

δ + P (z)

and so

n′(z) =
δP ′(z)

(δ + P (z))2

Hence n′(z) and P ′(z) share the same sign; if P ′ is positive, the result is proven. We have

P ′(z) = −γ0F ′(R(z))R′(z)− (1− γ0)(ρ(z)G̃′(R(z))R′(z)− (1− γ0)(1− G̃(R(z))ρ′(z)))

This is positive if

R′(z) ≤
ρ′(z)(1− γ0)(1− G̃(R(z)))

γ0F ′(R(z)) + (1− γ0)ρ(z)G̃′(R(z))

This states that if R′(z) is smaller than a positive cutoff, n′(z) is positive. This will certainly hold

if R′(z) < 0, as was shown above.

A.4 Proof of Proposition 2

Proposition 5. G̃(w) first-order stochastically dominates G(w).

Proof. To show that G̃(w) first-order stochastically dominates G(w), we will now that Ψ̃ first-order

stochastically dominates (FOSD) Ω. Recall that Ψ = sΩ

<s>
, so Ψ

Ω
= s

<s>
, which is increasing, and it

is how we show Ψ FOSD Ω. If Ψ̃

Ω
is increasing, this result is proven.

Note, it is not true that Ψ̃ FOSD Ψ. In fact, the opposite is true. So, we have

Ψ̃ =
n(s)1

s
Ψ

˜< s >

=
n(s)1

s

sΩ

<s>

˜< s >

=
n(s)Ω

˜< s > < s >

Ψ̃

Ω
=

n(s)

˜< s > < s >
≡

n(s)

N

Since n(s) is increasing the result is proven.
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A.5 Proof of Proposition 3

Proposition 6. G̃(w) first-order stochastically dominates F (w).

Proof. Finally, we show that G̃ first-order stochastically dominates F . To establish this, it suf-

fices to show that G first-order stochastically dominates F . Recall the job finding rate out of

unemployment, P (z)

P (z) = γ0(1− F (R(z)) + (1− γ0)ρ(z)(1− G̃(R(z)))

We now define two functions

P 0(w, z) = γ0F (w) + (1− γ0)ρ(z)G̃(w)

P 1(w, z) = γ1F (w) + (1− γ1)ρ(z)G̃(w)

where P 0(R(z), z) = P (z) is the job finding rate out of unemployment, while P 1(w, z) is the job

finding rate when employed at a firm offering wage w.

From the definition of G(w, z) and n(z), we can write

G(w, z) =
1− n(z)

n(z)

P 0(w, z)− P 0(R(z), z)

δ + (P 1(w̄, z)− P 1(w, z))

1− n(z)

n(z)
=

δ

P 0(w̄, z)− P 0(R(z), z)

Substituting, we have

G(w, z) =
δ
P 0(w,z)−P 0(R(z),z)
P 0(w̄,z)−P 0(R(z),z)

δ + (P 1(w̄, z)− P 1(w, z)))

=

P 0(w,z)−P 0(R(z),z)
P 0(w̄,z)−P 0(R(z),z)

1 + 1
δ
(P 1(w̄, z)− P 1(w, z)))

≤
P 0(w, z)− P 0(R(z), z)

P 0(w̄, z)− P 0(R(z), z)

≤ P 0(w, z)− P 0(R(z), z)

≤ P 0(w, z)

where the penultimate inequality follows because P 0(w̄, z) > P 0(w, z) > P 0(R(z), z), and ultimate

inequality follows because P 0(R(z), z) ≥ 0. Thus, we have

G(w, z) ≤ P 0(w, z),

showing the the earnings distribution of workers of type z first order stochastically dominates a
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“weighted ” offer distribution for these workers. This implies

G(w, z) ≤ P 0(w, z)

G(w, z) ≤ γ0(F (w)) + (1− γ0)ρ(z)(G̃(w))

Integrating both sides with respect to the neighbor type distribution Ψ̃(z), we have

G̃(w) ≤ γ0(F (w)) + (1− γ0)G̃(w)ρ̃,

where ρ̃ =
´

ρ(z)Ψ̃(z)dz is the “average” network contact rate among a worker’s peers. This

implies

G̃(w) ≤
γ0F (w)

1− (1− γ0)ρ̃
≤ F (w)

where the final inequality follows because γ0

1−(1−γ0)ρ̃
≤ 1. Thus the result is proven.

A.6 Proof of Proposition 4

Lemma 5. The reservation wage is declining in ν,
∂R(z;ν)

∂ν
< 0

∣

∣

∣

ν=0,

Proof. Evaluating the partial derivative:

∂R(z; ν)

∂ν
= −

(

∂ρ(z)

∂ν
(γ0 − γ1)

)
ˆ w̄

R

Vx(z, x)(1−G(x))dx

− (γ0 − γ1)(1− ρ(z))Vx(z, R)

Because ∂ρ

∂ν
= (1 − ρ(z))(zγ1

´

n(s)
s
Ψ̃(s)ds) > 0 and Vx > 0 for any value x, both lines are

definitely negative and so is the entire partial derivative.

Lemma 6. Holding constant equilibrium distributions (n,G, F ), the lower-bound, w, is decreasing

in ν from ν = 0: ∂w

∂ν

∣

∣

∣

ν=0
≤ 0

Proof. Let w0 be the initial lowest wage when ν = 0. At ν = 0 we know that R(z) = R = w0 ∀z

because this is simply the BM case. If instead ν > 0 then R(z) < w0 ∀z > 0.

Consider a firm offering w′ ≤ w0, then this firm makes a larger profit than (1 − w0)L(w0) if

(1−w′)L(w′) ≥ (1−w0)L(w0). Because w′ may be arbitrarily close to w0, we need to show that at

w0 the decrease in the firm size ∂L(w0)
∂w

does not have larger magnitude than the increase in profit per

worker. Put another way, we need to verify that at ν > 0 that ∂π(w0)
∂w

= (1−w0)∂L(w
0)

∂w
−L(w0) ≤ 0

Rather than setting conditions to establish its magnitude relative to L(w0)
(1−w0)

, we can approach

this piece-wise for the two cases:

1. If ∂L(w)
∂w

<
L(w0)
1−w0 then the strict inequality holds, ∂w

∂ν

∣

∣

∣

ν=0
< 0.
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2. If instead ∂L(w)
∂w

≥
L(w0)
1−w0 . Then w′′ > w cannot be the lowest wage offered because a deviation

of w would attract the same size firm—recruiting anyone from unemployment—but make

higher profit. Hence, in these cases ∂w

∂ν

∣

∣

∣

ν=0
= 0.

Lemma 7. For sufficiently high γ1, dπ
dν

∣

∣

ν=0
≤ 0

Proof. To show it is negative, we will directly evaluate the derivative of π with respect to ν:

dπ

dν
= −

∂w

∂ν
L(w) + (1− w)

(

∂L(w; ν)

∂ν
+

∂L(w)

∂w

∂w

∂ν

)

The last term reflects the fact that L depends directly on ν and its evaluation point w also depends

on ν, as shown in Lemma 6.

Recall, the lowest wage for any ν ≥ 0, w(ν) must satisfy

∂π

∂w
= 0 = (1− w(ν))

∂L(w(ν); ν)

∂w
− L(w(ν); ν).

Now, we plug in the first-order condition, that at optimal w, L(w) = (1− w)∂L(w)
∂w

to get

dπ

dν
= −

∂w

∂ν
(1− w)

∂L(w)

∂w
+ (1− w)

(

∂L(w; ν)

∂ν
+

∂L(w)

∂w

∂w

∂ν

)

Canceling terms, the sign of dπ
dν

depends only on the partial ∂L(w;ν)
∂ν

because (1 − w) ≥ 0. To

address this, we will first take the partial of ℓ(w, z), and then integrate over these,

∂ℓ(w, z; ν)

∂ν
=

∂

∂ν





(1− n(z))
(

Ω(z)
M

γ0 + νΨ̃(z)
´

ℓ(w, t)tdt
)

δ + γ1 + (1− γ1)ρ(z)





=
(1− n(z))

(

Ψ̃(z)
´

t
ℓ(w, t)tdt+ νΨ̃(z)

´

∂ℓ(w,t)
∂ν

tdt
)

δ + γ1 + (1− γ1)ρ(z)
−

∂ρ(z)
∂ν

(1− γ1)

δ + γ1 + (1− γ1)ρ(z)
ℓ(w, z)

evaluating this at ν = 0 and plugging in ∂ρ(z)
∂ν

= (1− ρ(z))(zγ1
´

n(s)
s
Ψ̃(s)ds) gives us

∂ℓ(w, z; ν)

∂ν
=

(1− n(z))Ψ̃(z)
´

t
ℓ(w, t)tdt

δ + γ1
−

(

zγ1
´

n(s)
s
Ψ̃(s)ds

)

(1− γ1)

δ + γ1
ℓ(w, z) (31)

This is the increase in hiring through referrals minus the increase in outflows due to other firms

also hiring more quickly through referrals. Now, taking the partial derivative of the whole firm,
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plugging in Equation 31 at all z we have

∂L

∂ν
=

∂

∂ν

(
ˆ

∞

ẑ

ℓ(w, z)dz

)

=

ˆ

∞

ẑ

(1− n(z))Ψ̃(z)
´

t
ℓ(w, t)tdt

δ + γ1
−

(

zγ1
´

n(s)
s
Ψ̃(s)ds

)

(1− γ1)

δ + γ1
ℓ(w, z)dz

−

(1− n(ẑ))
(

Ω(ẑ)
M

γ0 + νΨ̃(ẑ)
´

ℓ(w, t)tdt
)

δ + γ1

∂ẑ

∂ν
(32)

Then we can rearrange Equation 32 to be

∂L

∂ν
=

1

δ + γ1

(
ˆ

∞

ẑ

(1− n(z))Ψ̃(z)dz

ˆ

∞

ẑ

ℓ(w, t)tdt− γ1(1− γ1)

ˆ

∞

1

n(s)

s
Ψ̃(s)ds

ˆ

∞

ẑ

ℓ(w, z)zdz

)

−

(1− n(ẑ))
(

Ω(ẑ)
M

γ0 + νΨ̃(ẑ)
´

ℓ(w, t)tdt
)

δ + γ1

∂ẑ

∂ν
(33)

The first term is negative iff
´

(1 − n(z))Ψ̃(z)dz < γ1(1 − γ1)
´

n(z)
z
Ψ̃(z)dz, where both of the

integrals are evaluated from 1 to ∞, replacing ẑ = 1 because we are evaluating this derivative

at ν = 0. The second term is always negative because ∂ẑ
∂ν

> 0. So a sufficient, though not

necessary condition is a parameter restrictions that implies. Recall, the employment level and

Ψ distributions are simply functions of parameters, and not endogenously determined at ν = 0,

therefore this can be written as a restriction of γ1 being large enough relative to a function of δ, γ0

and α: we need job-to-job finding rates to be high enough relative to the size of the unemployment

pool from which w firms may recruit. With our power-law distribution, this condition becomes

true if γ1(1−γ1)α−1
α+2

≥
δ

γ0+δ
. Note, however, that if δ

γ0+δ
is large, such that the sufficient condition

is not satisfied, the second line of Equation 33 becomes more negative.

Lemma 8. The direct effect of ν on labor at a top-wage firm is positive,
∂L(w̄)
∂ν

∣

∣

∣

ν=0
> 0

Proof. Labor of each type at a top firm is given by

ℓ(w̄, z)δ =
Ω(z)

M
((1− n(z))γ0 + n(z)γ1) + νΨ̃(z)

ˆ

∞

1

ℓ(w̄, t)tdt

Integrating over types z, and taking the partial with respect to ν we have

∂L(w̄)

∂ν
=

1

δ

ˆ

∞

1

Ψ̃(z)

ˆ

∞

1

ℓ(w̄, t)tdtdz

This is clearly positive because every term over which we are integrating must be positive.

Lemma 9. The highest offered wage is increasing in ν from ν = 0, ∂w̄
∂ν

∣

∣

ν=0
> 0
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Proof. The highest wage w̄ must satisfy profit equalization π = (1− w̄)L(w̄) = (1−w)L(w). From

Lemma 7 we have that profit is decreasing in ν from ν = 0. If ∂π

∂ν
< 0 and ∂L(w̄)

∂ν
> 0, then for

profit equalization to hold it must be the case that w̄ increases.

We can now prove the main Proposition:

Proposition. 4:

Evaluated at ν = 0,

• The interval of wages gets wider,
∂w

∂ν
≤ 0 , ∂w̄

∂ν
≥ 0

• Firms at the lowest wages get smaller and at the highest wages they get larger,
dL(w)
dν

≤ 0 and
dL(w̄)
dν

≥ 0

• Profit declines dπ

dν
≤ 0

Proof. The first bullet point is because of Lemma 6 and Lemma 9. Taking the second bullet point:

dL(w)

dν
=

∂L(w)

∂ν
+

∂L(w)

∂w

∂w

∂nu

The first term is negative because of Lemma 7, Equation 33, the second term is negative because
∂L(w)
∂w

> 0 and Lemma 6. While

dL(w̄)

dν
=

∂L(w̄)

∂ν
+

∂L(w̄)

∂w

∂w

∂nu

are all positive terms, the first because of Lemma 8 and the second because of Lemma 9. Finally,

profit decline is shown in Lemma 7.

B Network search data from the Survey of Consumer Ex-

pectations

To select our sample, we require that workers report the search method that led to their

current job, as well as the salary associated with it and employment characteristics we use as

regressors. We allow either full or part-time employment but restrict to those making at least

$80 per week. We drop those who did not transition from prior employment or unemployment.

Because workers may report their current and past salary either as annual, weekly or hourly, we

convert all to weekly salaries. To convert hourly wages, we multiply by reported usual hours and

divide annual salaries by 52 weeks. Workers do not directly report their usual hours in their prior

employment, instead they list the change from their current job, which could, of course, introduce
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some measurement error. Unfortunately, the public version of the SCE does not include data

on worker’s demographic characteristics otherwise we could restrict ourselves to a homogeneous

sample or statistically control these differences.

In our regressions we control for firm size and industry effects. We use the size bundles available

in the SCE and collapse these 2-digit industry codes into approximately 1-digit bins combining

industries 1-5, 6-8, 10-14, 16-19 and another with 15 and 9. We categorize a “voluntary job-to-job”

transition if there was no interstitial unemployment spell and the separation did not occur because

the original job ended. We follow the SCE in defining part-time and full-time work.

Total Network Direct
Wkly Salary $1,334.20 $1,414.73 $1,309.30

($38.83) ($69.93) ($46.00)
Usual Hours 41.26 40.55 41.48

(0.29) (0.60) (0.33)
Prior Wkly Salary $1,124.42 $1,309.19 $1,067.28

($85.96) ($234.70) ($86.01)
Num Employees 2.83 2.79 2.84

(0.04) (0.08) (0.05)
Voluntary Sep 0.59 0.66 0.57

(0.01) (0.03) (0.02)
Obs 1287 304 983

Table IV: Summary statistics for our SCE sample and split between those who found their current
job through a network referral, about 1

4
the sample, and those who did not. Standard errors in

parentheses.

Table IV presents summary statistics for our sample. Unconditionally, workers who found their

job via networks have generally higher wages and came from higher wages. The most salient other

difference in is that they tend more frequently to separate voluntarily.

We next use a regression to confirm that this data is consistent with evidence in Dustmann et al.

(2015), that jobs found through referral have higher salaries, even conditional on other factors. As

discussed in Section 5, this is an aspect central to the mechanism in our model, in which network-

search gives workers access to job offers from a distribution that first-order stochastic dominates

the random-search offer distribution. To find empirical evidence, we estimate a logit, predicting

whether the current job was reportedly found through a network referral or direct contact search.

Formulating the estimation as such allows us to control for firm-effects that we know also affect

wages and the probability of hiring through referral. Specifically, we estimate for worker i with

employer j

Pr[Network find] = f(β1salaryij + β2smallj + β3J2Jij + β4PTij) . (34)

Table V presents the estimation results. The number of observations drops slightly from Table

IV because of missing industry codes. In the first column of Table V, we show the relationship
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between a workers earnings and the probability that they found their job through a network

referral. Those who earn more tend to have found their job through their network. In Column

(2) we substitute the size dummies for a single dummy representing those with fewer than 500

employees to illustrate that smaller firms tend to hire through referrals, confirming past findings.

In Columns (3) and (4) we show that the salary estimates are robust to controlling for whether

the transition was directly job-to-job and whether it is part or full time. The estimates of these

ancillary coefficients are rather imprecise but the signs are as expected.

(1) (2) (3) (4)
Log weekly salary 0.0513∗∗∗ 0.0484∗∗∗ 0.0413∗∗ 0.0498∗∗

(2.85) (2.75) (2.22) (2.55)

<500 employees 0.0132
(0.42)

Voluntary Job-to-Job 0.0656∗∗ 0.0677∗∗

(2.32) (2.40)

Part-time 0.0613
(1.21)

Firm Size Dummies X X X
Industry Dummies X X X X
Observations 933 934 933 933

Table V: Estimated marginal effects from equation 34
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